Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
- Autores
- Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; Cabezas, D.; de la Luz, V.; Luoni, Maria Luisa; Kaufmann, P.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.
Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Mackinnon, A.. University of Glasgow; Reino Unido
Fil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Simoes, P. J. A.. University of Glasgow; Reino Unido
Fil: Cabezas, D.. Universidade Presbiteriana Mackenzie; Brasil
Fil: de la Luz, V.. Universidad Nacional Autónoma de México; México
Fil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kaufmann, P.. University of Campinas; Brasil - Materia
-
Radio Burts
X-Ray Burts
Flares
Chromosphere - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17844
Ver los metadatos del registro completo
id |
CONICETDig_f7d4eb3ba6a4721082c9cdb755c1f499 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17844 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UTTrottet, G.Raulin, J. P.Mackinnon, A.Giménez de Castro, C. G.Simoes, P. J. A.Cabezas, D.de la Luz, V.Luoni, Maria LuisaKaufmann, P.Radio BurtsX-Ray BurtsFlaresChromospherehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: Mackinnon, A.. University of Glasgow; Reino UnidoFil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; BrasilFil: Simoes, P. J. A.. University of Glasgow; Reino UnidoFil: Cabezas, D.. Universidade Presbiteriana Mackenzie; BrasilFil: de la Luz, V.. Universidad Nacional Autónoma de México; MéxicoFil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kaufmann, P.. University of Campinas; BrasilSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17844Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–28260038-0938enginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.06336info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-015-0782-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-015-0782-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:52Zoai:ri.conicet.gov.ar:11336/17844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:52.819CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
title |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
spellingShingle |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT Trottet, G. Radio Burts X-Ray Burts Flares Chromosphere |
title_short |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
title_full |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
title_fullStr |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
title_full_unstemmed |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
title_sort |
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT |
dc.creator.none.fl_str_mv |
Trottet, G. Raulin, J. P. Mackinnon, A. Giménez de Castro, C. G. Simoes, P. J. A. Cabezas, D. de la Luz, V. Luoni, Maria Luisa Kaufmann, P. |
author |
Trottet, G. |
author_facet |
Trottet, G. Raulin, J. P. Mackinnon, A. Giménez de Castro, C. G. Simoes, P. J. A. Cabezas, D. de la Luz, V. Luoni, Maria Luisa Kaufmann, P. |
author_role |
author |
author2 |
Raulin, J. P. Mackinnon, A. Giménez de Castro, C. G. Simoes, P. J. A. Cabezas, D. de la Luz, V. Luoni, Maria Luisa Kaufmann, P. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Radio Burts X-Ray Burts Flares Chromosphere |
topic |
Radio Burts X-Ray Burts Flares Chromosphere |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation. Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil Fil: Mackinnon, A.. University of Glasgow; Reino Unido Fil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; Brasil Fil: Simoes, P. J. A.. University of Glasgow; Reino Unido Fil: Cabezas, D.. Universidade Presbiteriana Mackenzie; Brasil Fil: de la Luz, V.. Universidad Nacional Autónoma de México; México Fil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Kaufmann, P.. University of Campinas; Brasil |
description |
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17844 Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–2826 0038-0938 |
url |
http://hdl.handle.net/11336/17844 |
identifier_str_mv |
Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–2826 0038-0938 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.06336 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-015-0782-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-015-0782-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613751080222720 |
score |
13.070432 |