Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT

Autores
Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; Cabezas, D.; de la Luz, V.; Luoni, Maria Luisa; Kaufmann, P.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.
Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Mackinnon, A.. University of Glasgow; Reino Unido
Fil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Simoes, P. J. A.. University of Glasgow; Reino Unido
Fil: Cabezas, D.. Universidade Presbiteriana Mackenzie; Brasil
Fil: de la Luz, V.. Universidad Nacional Autónoma de México; México
Fil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kaufmann, P.. University of Campinas; Brasil
Materia
Radio Burts
X-Ray Burts
Flares
Chromosphere
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17844

id CONICETDig_f7d4eb3ba6a4721082c9cdb755c1f499
oai_identifier_str oai:ri.conicet.gov.ar:11336/17844
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UTTrottet, G.Raulin, J. P.Mackinnon, A.Giménez de Castro, C. G.Simoes, P. J. A.Cabezas, D.de la Luz, V.Luoni, Maria LuisaKaufmann, P.Radio BurtsX-Ray BurtsFlaresChromospherehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: Mackinnon, A.. University of Glasgow; Reino UnidoFil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; BrasilFil: Simoes, P. J. A.. University of Glasgow; Reino UnidoFil: Cabezas, D.. Universidade Presbiteriana Mackenzie; BrasilFil: de la Luz, V.. Universidad Nacional Autónoma de México; MéxicoFil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kaufmann, P.. University of Campinas; BrasilSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17844Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–28260038-0938enginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.06336info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-015-0782-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-015-0782-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:52Zoai:ri.conicet.gov.ar:11336/17844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:52.819CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
title Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
spellingShingle Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
Trottet, G.
Radio Burts
X-Ray Burts
Flares
Chromosphere
title_short Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
title_full Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
title_fullStr Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
title_full_unstemmed Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
title_sort Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT
dc.creator.none.fl_str_mv Trottet, G.
Raulin, J. P.
Mackinnon, A.
Giménez de Castro, C. G.
Simoes, P. J. A.
Cabezas, D.
de la Luz, V.
Luoni, Maria Luisa
Kaufmann, P.
author Trottet, G.
author_facet Trottet, G.
Raulin, J. P.
Mackinnon, A.
Giménez de Castro, C. G.
Simoes, P. J. A.
Cabezas, D.
de la Luz, V.
Luoni, Maria Luisa
Kaufmann, P.
author_role author
author2 Raulin, J. P.
Mackinnon, A.
Giménez de Castro, C. G.
Simoes, P. J. A.
Cabezas, D.
de la Luz, V.
Luoni, Maria Luisa
Kaufmann, P.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Radio Burts
X-Ray Burts
Flares
Chromosphere
topic Radio Burts
X-Ray Burts
Flares
Chromosphere
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.
Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Mackinnon, A.. University of Glasgow; Reino Unido
Fil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; Brasil
Fil: Simoes, P. J. A.. University of Glasgow; Reino Unido
Fil: Cabezas, D.. Universidade Presbiteriana Mackenzie; Brasil
Fil: de la Luz, V.. Universidad Nacional Autónoma de México; México
Fil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kaufmann, P.. University of Campinas; Brasil
description Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17844
Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–2826
0038-0938
url http://hdl.handle.net/11336/17844
identifier_str_mv Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–2826
0038-0938
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.06336
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-015-0782-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-015-0782-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613751080222720
score 13.070432