Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts

Autores
Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; Francoy, Tiago M.; Lopez Aliste, Manuel; Martínez, Lican Ernesto; Morales, Carolina Laura; Ollerton, Jeff; Pescott, Oliver L.; Powney, Gary D.; Saraiva, Antonio Mauro; Schmucki, Reto; Zattara, Eduardo Enrique; Carvell, Claire
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.
Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; Chile
Fil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; Chile
Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Francoy, Tiago M.. Universidade de Sao Paulo; Brasil
Fil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Ollerton, Jeff. University of Northampton; Reino Unido
Fil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; Brasil
Fil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino Unido
Materia
BEES
GBIF
HOVERFLIES
HUMMINGBIRDS
LEAF-NOSED BATS
POLLINATORS
SAMPLING BIAS
SPECIES OCCURRENCE DATA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202908

id CONICETDig_f76dd78f3c4afeb0470926be46e658f5
oai_identifier_str oai:ri.conicet.gov.ar:11336/202908
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization effortsBoyd, Robin J.Aizen, Marcelo AdrianBarahona Segovia, Rodrigo M.Flores Prado, LuisFontúrbel, Francisco E.Francoy, Tiago M.Lopez Aliste, ManuelMartínez, Lican ErnestoMorales, Carolina LauraOllerton, JeffPescott, Oliver L.Powney, Gary D.Saraiva, Antonio MauroSchmucki, RetoZattara, Eduardo EnriqueCarvell, ClaireBEESGBIFHOVERFLIESHUMMINGBIRDSLEAF-NOSED BATSPOLLINATORSSAMPLING BIASSPECIES OCCURRENCE DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; ChileFil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; ChileFil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: Francoy, Tiago M.. Universidade de Sao Paulo; BrasilFil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; ChileFil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ollerton, Jeff. University of Northampton; Reino UnidoFil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; BrasilFil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino UnidoFil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino UnidoWiley Blackwell Publishing, Inc2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202908Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-14151366-95161472-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13551info:eu-repo/semantics/altIdentifier/doi/10.1111/ddi.13551info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:51Zoai:ri.conicet.gov.ar:11336/202908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:51.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
title Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
spellingShingle Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
Boyd, Robin J.
BEES
GBIF
HOVERFLIES
HUMMINGBIRDS
LEAF-NOSED BATS
POLLINATORS
SAMPLING BIAS
SPECIES OCCURRENCE DATA
title_short Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
title_full Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
title_fullStr Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
title_full_unstemmed Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
title_sort Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
dc.creator.none.fl_str_mv Boyd, Robin J.
Aizen, Marcelo Adrian
Barahona Segovia, Rodrigo M.
Flores Prado, Luis
Fontúrbel, Francisco E.
Francoy, Tiago M.
Lopez Aliste, Manuel
Martínez, Lican Ernesto
Morales, Carolina Laura
Ollerton, Jeff
Pescott, Oliver L.
Powney, Gary D.
Saraiva, Antonio Mauro
Schmucki, Reto
Zattara, Eduardo Enrique
Carvell, Claire
author Boyd, Robin J.
author_facet Boyd, Robin J.
Aizen, Marcelo Adrian
Barahona Segovia, Rodrigo M.
Flores Prado, Luis
Fontúrbel, Francisco E.
Francoy, Tiago M.
Lopez Aliste, Manuel
Martínez, Lican Ernesto
Morales, Carolina Laura
Ollerton, Jeff
Pescott, Oliver L.
Powney, Gary D.
Saraiva, Antonio Mauro
Schmucki, Reto
Zattara, Eduardo Enrique
Carvell, Claire
author_role author
author2 Aizen, Marcelo Adrian
Barahona Segovia, Rodrigo M.
Flores Prado, Luis
Fontúrbel, Francisco E.
Francoy, Tiago M.
Lopez Aliste, Manuel
Martínez, Lican Ernesto
Morales, Carolina Laura
Ollerton, Jeff
Pescott, Oliver L.
Powney, Gary D.
Saraiva, Antonio Mauro
Schmucki, Reto
Zattara, Eduardo Enrique
Carvell, Claire
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BEES
GBIF
HOVERFLIES
HUMMINGBIRDS
LEAF-NOSED BATS
POLLINATORS
SAMPLING BIAS
SPECIES OCCURRENCE DATA
topic BEES
GBIF
HOVERFLIES
HUMMINGBIRDS
LEAF-NOSED BATS
POLLINATORS
SAMPLING BIAS
SPECIES OCCURRENCE DATA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.
Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; Chile
Fil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; Chile
Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Francoy, Tiago M.. Universidade de Sao Paulo; Brasil
Fil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Ollerton, Jeff. University of Northampton; Reino Unido
Fil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; Brasil
Fil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino Unido
description Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202908
Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-1415
1366-9516
1472-4642
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202908
identifier_str_mv Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-1415
1366-9516
1472-4642
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13551
info:eu-repo/semantics/altIdentifier/doi/10.1111/ddi.13551
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613640672509952
score 13.070432