Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts
- Autores
- Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; Francoy, Tiago M.; Lopez Aliste, Manuel; Martínez, Lican Ernesto; Morales, Carolina Laura; Ollerton, Jeff; Pescott, Oliver L.; Powney, Gary D.; Saraiva, Antonio Mauro; Schmucki, Reto; Zattara, Eduardo Enrique; Carvell, Claire
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.
Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; Chile
Fil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; Chile
Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Francoy, Tiago M.. Universidade de Sao Paulo; Brasil
Fil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Ollerton, Jeff. University of Northampton; Reino Unido
Fil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; Brasil
Fil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino Unido
Fil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino Unido - Materia
-
BEES
GBIF
HOVERFLIES
HUMMINGBIRDS
LEAF-NOSED BATS
POLLINATORS
SAMPLING BIAS
SPECIES OCCURRENCE DATA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202908
Ver los metadatos del registro completo
id |
CONICETDig_f76dd78f3c4afeb0470926be46e658f5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202908 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization effortsBoyd, Robin J.Aizen, Marcelo AdrianBarahona Segovia, Rodrigo M.Flores Prado, LuisFontúrbel, Francisco E.Francoy, Tiago M.Lopez Aliste, ManuelMartínez, Lican ErnestoMorales, Carolina LauraOllerton, JeffPescott, Oliver L.Powney, Gary D.Saraiva, Antonio MauroSchmucki, RetoZattara, Eduardo EnriqueCarvell, ClaireBEESGBIFHOVERFLIESHUMMINGBIRDSLEAF-NOSED BATSPOLLINATORSSAMPLING BIASSPECIES OCCURRENCE DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; ChileFil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; ChileFil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: Francoy, Tiago M.. Universidade de Sao Paulo; BrasilFil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; ChileFil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ollerton, Jeff. University of Northampton; Reino UnidoFil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino UnidoFil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; BrasilFil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino UnidoFil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino UnidoWiley Blackwell Publishing, Inc2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202908Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-14151366-95161472-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13551info:eu-repo/semantics/altIdentifier/doi/10.1111/ddi.13551info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:51Zoai:ri.conicet.gov.ar:11336/202908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:51.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
title |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
spellingShingle |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Boyd, Robin J. BEES GBIF HOVERFLIES HUMMINGBIRDS LEAF-NOSED BATS POLLINATORS SAMPLING BIAS SPECIES OCCURRENCE DATA |
title_short |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
title_full |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
title_fullStr |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
title_full_unstemmed |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
title_sort |
Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts |
dc.creator.none.fl_str_mv |
Boyd, Robin J. Aizen, Marcelo Adrian Barahona Segovia, Rodrigo M. Flores Prado, Luis Fontúrbel, Francisco E. Francoy, Tiago M. Lopez Aliste, Manuel Martínez, Lican Ernesto Morales, Carolina Laura Ollerton, Jeff Pescott, Oliver L. Powney, Gary D. Saraiva, Antonio Mauro Schmucki, Reto Zattara, Eduardo Enrique Carvell, Claire |
author |
Boyd, Robin J. |
author_facet |
Boyd, Robin J. Aizen, Marcelo Adrian Barahona Segovia, Rodrigo M. Flores Prado, Luis Fontúrbel, Francisco E. Francoy, Tiago M. Lopez Aliste, Manuel Martínez, Lican Ernesto Morales, Carolina Laura Ollerton, Jeff Pescott, Oliver L. Powney, Gary D. Saraiva, Antonio Mauro Schmucki, Reto Zattara, Eduardo Enrique Carvell, Claire |
author_role |
author |
author2 |
Aizen, Marcelo Adrian Barahona Segovia, Rodrigo M. Flores Prado, Luis Fontúrbel, Francisco E. Francoy, Tiago M. Lopez Aliste, Manuel Martínez, Lican Ernesto Morales, Carolina Laura Ollerton, Jeff Pescott, Oliver L. Powney, Gary D. Saraiva, Antonio Mauro Schmucki, Reto Zattara, Eduardo Enrique Carvell, Claire |
author2_role |
author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
BEES GBIF HOVERFLIES HUMMINGBIRDS LEAF-NOSED BATS POLLINATORS SAMPLING BIAS SPECIES OCCURRENCE DATA |
topic |
BEES GBIF HOVERFLIES HUMMINGBIRDS LEAF-NOSED BATS POLLINATORS SAMPLING BIAS SPECIES OCCURRENCE DATA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide. Fil: Boyd, Robin J.. UK Centre for Ecology & Hydrology; Reino Unido Fil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Barahona Segovia, Rodrigo M.. Universidad de Los Lagos; Chile Fil: Flores Prado, Luis. Universidad Metropolitana de Ciencias de la Educación.; Chile Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; Chile Fil: Francoy, Tiago M.. Universidade de Sao Paulo; Brasil Fil: Lopez Aliste, Manuel. Pontificia Universidad Católica de Valparaíso; Chile Fil: Martínez, Lican Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Ollerton, Jeff. University of Northampton; Reino Unido Fil: Pescott, Oliver L.. UK Centre for Ecology & Hydrology; Reino Unido Fil: Powney, Gary D.. UK Centre for Ecology & Hydrology; Reino Unido Fil: Saraiva, Antonio Mauro. Universidade de Sao Paulo; Brasil Fil: Schmucki, Reto. UK Centre for Ecology & Hydrology; Reino Unido Fil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Carvell, Claire. UK Centre for Ecology & Hydrology; Reino Unido |
description |
Aim: Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location: The Neotropics. Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions: Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202908 Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-1415 1366-9516 1472-4642 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202908 |
identifier_str_mv |
Boyd, Robin J.; Aizen, Marcelo Adrian; Barahona Segovia, Rodrigo M.; Flores Prado, Luis; Fontúrbel, Francisco E.; et al.; Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts; Wiley Blackwell Publishing, Inc; Diversity and Distributions; 28; 7; 7-2022; 1404-1415 1366-9516 1472-4642 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13551 info:eu-repo/semantics/altIdentifier/doi/10.1111/ddi.13551 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613640672509952 |
score |
13.070432 |