Probability of ventricular fibrillation: allometric model based on the ST deviation
- Autores
- Bonomini, Maria Paula; Arini, Pedro David; Valentinuzzi, Max E.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values. Methods Data collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VF p = δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation. Results By application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event. Conclusions These results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions.
Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Valentinuzzi, Max E.. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina - Materia
-
ALLOMETRIC MODEL
CARDIAC RISK
ST SEGMENT DEVIATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20218
Ver los metadatos del registro completo
| id |
CONICETDig_f76bb9910715b319d718ad82eea1679c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20218 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Probability of ventricular fibrillation: allometric model based on the ST deviationBonomini, Maria PaulaArini, Pedro DavidValentinuzzi, Max E.ALLOMETRIC MODELCARDIAC RISKST SEGMENT DEVIATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Background Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values. Methods Data collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VF p = δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation. Results By application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event. Conclusions These results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions.Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Valentinuzzi, Max E.. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaBioMed Central2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20218Bonomini, Maria Paula; Arini, Pedro David; Valentinuzzi, Max E.; Probability of ventricular fibrillation: allometric model based on the ST deviation; BioMed Central; Biomedical Engineering Online; 10; 2; 1-2011; 1-81475-925XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.biomedical-engineering-online.com/content/10/1/2info:eu-repo/semantics/altIdentifier/doi/10.1186/1475-925X-10-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:31:01Zoai:ri.conicet.gov.ar:11336/20218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:31:01.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| title |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| spellingShingle |
Probability of ventricular fibrillation: allometric model based on the ST deviation Bonomini, Maria Paula ALLOMETRIC MODEL CARDIAC RISK ST SEGMENT DEVIATION |
| title_short |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| title_full |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| title_fullStr |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| title_full_unstemmed |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| title_sort |
Probability of ventricular fibrillation: allometric model based on the ST deviation |
| dc.creator.none.fl_str_mv |
Bonomini, Maria Paula Arini, Pedro David Valentinuzzi, Max E. |
| author |
Bonomini, Maria Paula |
| author_facet |
Bonomini, Maria Paula Arini, Pedro David Valentinuzzi, Max E. |
| author_role |
author |
| author2 |
Arini, Pedro David Valentinuzzi, Max E. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ALLOMETRIC MODEL CARDIAC RISK ST SEGMENT DEVIATION |
| topic |
ALLOMETRIC MODEL CARDIAC RISK ST SEGMENT DEVIATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Background Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values. Methods Data collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VF p = δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation. Results By application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event. Conclusions These results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions. Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Valentinuzzi, Max E.. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina |
| description |
Background Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values. Methods Data collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VF p = δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation. Results By application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event. Conclusions These results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20218 Bonomini, Maria Paula; Arini, Pedro David; Valentinuzzi, Max E.; Probability of ventricular fibrillation: allometric model based on the ST deviation; BioMed Central; Biomedical Engineering Online; 10; 2; 1-2011; 1-8 1475-925X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/20218 |
| identifier_str_mv |
Bonomini, Maria Paula; Arini, Pedro David; Valentinuzzi, Max E.; Probability of ventricular fibrillation: allometric model based on the ST deviation; BioMed Central; Biomedical Engineering Online; 10; 2; 1-2011; 1-8 1475-925X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.biomedical-engineering-online.com/content/10/1/2 info:eu-repo/semantics/altIdentifier/doi/10.1186/1475-925X-10-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
BioMed Central |
| publisher.none.fl_str_mv |
BioMed Central |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781910028648448 |
| score |
12.982451 |