Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level
- Autores
- Rearte, Ramiro; Lorenti, Santiago Nicolas; Dominguez, German; de la Sota, Rodolfo Luzbel; Lacau, Isabel María; Giuliodori, Mauricio Javier
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A retrospective longitudinal study assessing the explanatory and predictive capacity of body condition score (BCS) in dairy cows on disease risk at the individual and herd level was carried out. Data from two commercial grazing herds from the Argentinean Pampa were gathered (Herd A = 2100 and herd B = 2600 milking cows per year) for 4 years. Logistic models were used to assess the association of BCS indicators with the odds for anestrus at the cow and herd level. Population attributable fraction (AFP) was estimated to assess the anestrus rate due to BCS indicators. We found that anestrus risk decreased in cows calving with BCS ≥ 3 and losing ≤ 0.5 (OR: 0.07–0.41), and that anestrus rate decreased in cohorts with a high frequency of cows with proper BCS (OR: 0.22–0.45). Despite aggregated data having a good explanatory power, their predictive capacity for anestrus rate at the herd level is poor (AUC: 0.574–0.679). The AFP varied along the study in both herds and tended to decrease every time the anestrous rate peaked. We conclude that threshold-based models with BCS indicators as predictors are useful to understand disease risk (e.g., anestrus), but conversely, they are useless to predict such multicausal disease events at the herd level.
Fil: Rearte, Ramiro. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lorenti, Santiago Nicolas. No especifíca;
Fil: Dominguez, German. No especifíca;
Fil: de la Sota, Rodolfo Luzbel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; Argentina
Fil: Lacau, Isabel María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Giuliodori, Mauricio Javier. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas. Cátedra de Fisiología; Argentina - Materia
-
ANESTRUS RATE
BODY CONDITION SCORING
DAIRY HERD
MONITORING RISK FACTORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223495
Ver los metadatos del registro completo
| id |
CONICETDig_f6d6f5ff14242d3fa87d39ea3a233380 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223495 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd LevelRearte, RamiroLorenti, Santiago NicolasDominguez, Germande la Sota, Rodolfo LuzbelLacau, Isabel MaríaGiuliodori, Mauricio JavierANESTRUS RATEBODY CONDITION SCORINGDAIRY HERDMONITORING RISK FACTORShttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4A retrospective longitudinal study assessing the explanatory and predictive capacity of body condition score (BCS) in dairy cows on disease risk at the individual and herd level was carried out. Data from two commercial grazing herds from the Argentinean Pampa were gathered (Herd A = 2100 and herd B = 2600 milking cows per year) for 4 years. Logistic models were used to assess the association of BCS indicators with the odds for anestrus at the cow and herd level. Population attributable fraction (AFP) was estimated to assess the anestrus rate due to BCS indicators. We found that anestrus risk decreased in cows calving with BCS ≥ 3 and losing ≤ 0.5 (OR: 0.07–0.41), and that anestrus rate decreased in cohorts with a high frequency of cows with proper BCS (OR: 0.22–0.45). Despite aggregated data having a good explanatory power, their predictive capacity for anestrus rate at the herd level is poor (AUC: 0.574–0.679). The AFP varied along the study in both herds and tended to decrease every time the anestrous rate peaked. We conclude that threshold-based models with BCS indicators as predictors are useful to understand disease risk (e.g., anestrus), but conversely, they are useless to predict such multicausal disease events at the herd level.Fil: Rearte, Ramiro. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lorenti, Santiago Nicolas. No especifíca;Fil: Dominguez, German. No especifíca;Fil: de la Sota, Rodolfo Luzbel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; ArgentinaFil: Lacau, Isabel María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Giuliodori, Mauricio Javier. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas. Cátedra de Fisiología; ArgentinaMultidisciplinary Digital Publishing Institute2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223495Rearte, Ramiro; Lorenti, Santiago Nicolas; Dominguez, German; de la Sota, Rodolfo Luzbel; Lacau, Isabel María; et al.; Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level; Multidisciplinary Digital Publishing Institute; Animals; 13; 19; 10-2023; 1-112076-2615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/ani13193114info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T10:00:38Zoai:ri.conicet.gov.ar:11336/223495instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 10:00:38.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| title |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| spellingShingle |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level Rearte, Ramiro ANESTRUS RATE BODY CONDITION SCORING DAIRY HERD MONITORING RISK FACTORS |
| title_short |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| title_full |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| title_fullStr |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| title_full_unstemmed |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| title_sort |
Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level |
| dc.creator.none.fl_str_mv |
Rearte, Ramiro Lorenti, Santiago Nicolas Dominguez, German de la Sota, Rodolfo Luzbel Lacau, Isabel María Giuliodori, Mauricio Javier |
| author |
Rearte, Ramiro |
| author_facet |
Rearte, Ramiro Lorenti, Santiago Nicolas Dominguez, German de la Sota, Rodolfo Luzbel Lacau, Isabel María Giuliodori, Mauricio Javier |
| author_role |
author |
| author2 |
Lorenti, Santiago Nicolas Dominguez, German de la Sota, Rodolfo Luzbel Lacau, Isabel María Giuliodori, Mauricio Javier |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
ANESTRUS RATE BODY CONDITION SCORING DAIRY HERD MONITORING RISK FACTORS |
| topic |
ANESTRUS RATE BODY CONDITION SCORING DAIRY HERD MONITORING RISK FACTORS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
A retrospective longitudinal study assessing the explanatory and predictive capacity of body condition score (BCS) in dairy cows on disease risk at the individual and herd level was carried out. Data from two commercial grazing herds from the Argentinean Pampa were gathered (Herd A = 2100 and herd B = 2600 milking cows per year) for 4 years. Logistic models were used to assess the association of BCS indicators with the odds for anestrus at the cow and herd level. Population attributable fraction (AFP) was estimated to assess the anestrus rate due to BCS indicators. We found that anestrus risk decreased in cows calving with BCS ≥ 3 and losing ≤ 0.5 (OR: 0.07–0.41), and that anestrus rate decreased in cohorts with a high frequency of cows with proper BCS (OR: 0.22–0.45). Despite aggregated data having a good explanatory power, their predictive capacity for anestrus rate at the herd level is poor (AUC: 0.574–0.679). The AFP varied along the study in both herds and tended to decrease every time the anestrous rate peaked. We conclude that threshold-based models with BCS indicators as predictors are useful to understand disease risk (e.g., anestrus), but conversely, they are useless to predict such multicausal disease events at the herd level. Fil: Rearte, Ramiro. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lorenti, Santiago Nicolas. No especifíca; Fil: Dominguez, German. No especifíca; Fil: de la Sota, Rodolfo Luzbel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Teriogenología. Cátedra de Reproducción Animal; Argentina Fil: Lacau, Isabel María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Giuliodori, Mauricio Javier. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas. Cátedra de Fisiología; Argentina |
| description |
A retrospective longitudinal study assessing the explanatory and predictive capacity of body condition score (BCS) in dairy cows on disease risk at the individual and herd level was carried out. Data from two commercial grazing herds from the Argentinean Pampa were gathered (Herd A = 2100 and herd B = 2600 milking cows per year) for 4 years. Logistic models were used to assess the association of BCS indicators with the odds for anestrus at the cow and herd level. Population attributable fraction (AFP) was estimated to assess the anestrus rate due to BCS indicators. We found that anestrus risk decreased in cows calving with BCS ≥ 3 and losing ≤ 0.5 (OR: 0.07–0.41), and that anestrus rate decreased in cohorts with a high frequency of cows with proper BCS (OR: 0.22–0.45). Despite aggregated data having a good explanatory power, their predictive capacity for anestrus rate at the herd level is poor (AUC: 0.574–0.679). The AFP varied along the study in both herds and tended to decrease every time the anestrous rate peaked. We conclude that threshold-based models with BCS indicators as predictors are useful to understand disease risk (e.g., anestrus), but conversely, they are useless to predict such multicausal disease events at the herd level. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223495 Rearte, Ramiro; Lorenti, Santiago Nicolas; Dominguez, German; de la Sota, Rodolfo Luzbel; Lacau, Isabel María; et al.; Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level; Multidisciplinary Digital Publishing Institute; Animals; 13; 19; 10-2023; 1-11 2076-2615 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/223495 |
| identifier_str_mv |
Rearte, Ramiro; Lorenti, Santiago Nicolas; Dominguez, German; de la Sota, Rodolfo Luzbel; Lacau, Isabel María; et al.; Monitoring of Body Condition in Dairy Cows to Assess Disease Risk at the Individual and Herd Level; Multidisciplinary Digital Publishing Institute; Animals; 13; 19; 10-2023; 1-11 2076-2615 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/ani13193114 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598490938081280 |
| score |
13.24909 |