Transformation of spin information into large electrical signals using carbon nanotubes

Autores
Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; Simons, Benjamin D.; Littlewood, Peter B.; Artacho, Emilio; Fert, Albert; Mathur, Neil D.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados Unidos
Fil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados Unidos
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados Unidos
Fil: Valdés Herrera, José P.. University of Cambridge; Estados Unidos
Fil: Simons, Benjamin D.. University of Cambridge; Reino Unido
Fil: Littlewood, Peter B.. University of Cambridge; Reino Unido
Fil: Artacho, Emilio. University of Cambridge; Reino Unido
Fil: Fert, Albert. Université Paris Sud; Francia
Fil: Mathur, Neil D.. University of Cambridge; Reino Unido
Materia
SPINTRONICS
AB INITIO
NANOTUBES
MANGANITES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96240

id CONICETDig_f6ce8219dbaa76ec3e91863111b89d53
oai_identifier_str oai:ri.conicet.gov.ar:11336/96240
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Transformation of spin information into large electrical signals using carbon nanotubesHueso, Luis E.Alonso Pruneda, José MiguelFerrari, Valeria PaolaBurnell, GavinValdés Herrera, José P.Simons, Benjamin D.Littlewood, Peter B.Artacho, EmilioFert, AlbertMathur, Neil D.SPINTRONICSAB INITIONANOTUBESMANGANITEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados UnidosFil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados UnidosFil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados UnidosFil: Valdés Herrera, José P.. University of Cambridge; Estados UnidosFil: Simons, Benjamin D.. University of Cambridge; Reino UnidoFil: Littlewood, Peter B.. University of Cambridge; Reino UnidoFil: Artacho, Emilio. University of Cambridge; Reino UnidoFil: Fert, Albert. Université Paris Sud; FranciaFil: Mathur, Neil D.. University of Cambridge; Reino UnidoNature Publishing Group2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96240Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-4130028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/nature05507info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature05507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:18Zoai:ri.conicet.gov.ar:11336/96240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:18.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Transformation of spin information into large electrical signals using carbon nanotubes
title Transformation of spin information into large electrical signals using carbon nanotubes
spellingShingle Transformation of spin information into large electrical signals using carbon nanotubes
Hueso, Luis E.
SPINTRONICS
AB INITIO
NANOTUBES
MANGANITES
title_short Transformation of spin information into large electrical signals using carbon nanotubes
title_full Transformation of spin information into large electrical signals using carbon nanotubes
title_fullStr Transformation of spin information into large electrical signals using carbon nanotubes
title_full_unstemmed Transformation of spin information into large electrical signals using carbon nanotubes
title_sort Transformation of spin information into large electrical signals using carbon nanotubes
dc.creator.none.fl_str_mv Hueso, Luis E.
Alonso Pruneda, José Miguel
Ferrari, Valeria Paola
Burnell, Gavin
Valdés Herrera, José P.
Simons, Benjamin D.
Littlewood, Peter B.
Artacho, Emilio
Fert, Albert
Mathur, Neil D.
author Hueso, Luis E.
author_facet Hueso, Luis E.
Alonso Pruneda, José Miguel
Ferrari, Valeria Paola
Burnell, Gavin
Valdés Herrera, José P.
Simons, Benjamin D.
Littlewood, Peter B.
Artacho, Emilio
Fert, Albert
Mathur, Neil D.
author_role author
author2 Alonso Pruneda, José Miguel
Ferrari, Valeria Paola
Burnell, Gavin
Valdés Herrera, José P.
Simons, Benjamin D.
Littlewood, Peter B.
Artacho, Emilio
Fert, Albert
Mathur, Neil D.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv SPINTRONICS
AB INITIO
NANOTUBES
MANGANITES
topic SPINTRONICS
AB INITIO
NANOTUBES
MANGANITES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados Unidos
Fil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados Unidos
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados Unidos
Fil: Valdés Herrera, José P.. University of Cambridge; Estados Unidos
Fil: Simons, Benjamin D.. University of Cambridge; Reino Unido
Fil: Littlewood, Peter B.. University of Cambridge; Reino Unido
Fil: Artacho, Emilio. University of Cambridge; Reino Unido
Fil: Fert, Albert. Université Paris Sud; Francia
Fil: Mathur, Neil D.. University of Cambridge; Reino Unido
description Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96240
Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-413
0028-0836
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96240
identifier_str_mv Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-413
0028-0836
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/nature05507
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature05507
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269849309413376
score 13.13397