Transformation of spin information into large electrical signals using carbon nanotubes
- Autores
- Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; Simons, Benjamin D.; Littlewood, Peter B.; Artacho, Emilio; Fert, Albert; Mathur, Neil D.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados Unidos
Fil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados Unidos
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados Unidos
Fil: Valdés Herrera, José P.. University of Cambridge; Estados Unidos
Fil: Simons, Benjamin D.. University of Cambridge; Reino Unido
Fil: Littlewood, Peter B.. University of Cambridge; Reino Unido
Fil: Artacho, Emilio. University of Cambridge; Reino Unido
Fil: Fert, Albert. Université Paris Sud; Francia
Fil: Mathur, Neil D.. University of Cambridge; Reino Unido - Materia
-
SPINTRONICS
AB INITIO
NANOTUBES
MANGANITES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96240
Ver los metadatos del registro completo
id |
CONICETDig_f6ce8219dbaa76ec3e91863111b89d53 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96240 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Transformation of spin information into large electrical signals using carbon nanotubesHueso, Luis E.Alonso Pruneda, José MiguelFerrari, Valeria PaolaBurnell, GavinValdés Herrera, José P.Simons, Benjamin D.Littlewood, Peter B.Artacho, EmilioFert, AlbertMathur, Neil D.SPINTRONICSAB INITIONANOTUBESMANGANITEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados UnidosFil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados UnidosFil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados UnidosFil: Valdés Herrera, José P.. University of Cambridge; Estados UnidosFil: Simons, Benjamin D.. University of Cambridge; Reino UnidoFil: Littlewood, Peter B.. University of Cambridge; Reino UnidoFil: Artacho, Emilio. University of Cambridge; Reino UnidoFil: Fert, Albert. Université Paris Sud; FranciaFil: Mathur, Neil D.. University of Cambridge; Reino UnidoNature Publishing Group2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96240Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-4130028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/nature05507info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature05507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:18Zoai:ri.conicet.gov.ar:11336/96240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:18.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Transformation of spin information into large electrical signals using carbon nanotubes |
title |
Transformation of spin information into large electrical signals using carbon nanotubes |
spellingShingle |
Transformation of spin information into large electrical signals using carbon nanotubes Hueso, Luis E. SPINTRONICS AB INITIO NANOTUBES MANGANITES |
title_short |
Transformation of spin information into large electrical signals using carbon nanotubes |
title_full |
Transformation of spin information into large electrical signals using carbon nanotubes |
title_fullStr |
Transformation of spin information into large electrical signals using carbon nanotubes |
title_full_unstemmed |
Transformation of spin information into large electrical signals using carbon nanotubes |
title_sort |
Transformation of spin information into large electrical signals using carbon nanotubes |
dc.creator.none.fl_str_mv |
Hueso, Luis E. Alonso Pruneda, José Miguel Ferrari, Valeria Paola Burnell, Gavin Valdés Herrera, José P. Simons, Benjamin D. Littlewood, Peter B. Artacho, Emilio Fert, Albert Mathur, Neil D. |
author |
Hueso, Luis E. |
author_facet |
Hueso, Luis E. Alonso Pruneda, José Miguel Ferrari, Valeria Paola Burnell, Gavin Valdés Herrera, José P. Simons, Benjamin D. Littlewood, Peter B. Artacho, Emilio Fert, Albert Mathur, Neil D. |
author_role |
author |
author2 |
Alonso Pruneda, José Miguel Ferrari, Valeria Paola Burnell, Gavin Valdés Herrera, José P. Simons, Benjamin D. Littlewood, Peter B. Artacho, Emilio Fert, Albert Mathur, Neil D. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
SPINTRONICS AB INITIO NANOTUBES MANGANITES |
topic |
SPINTRONICS AB INITIO NANOTUBES MANGANITES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications. Fil: Hueso, Luis E.. Istituto Per Lo Studio Dei Materiali Nanostrutturati; Italia. University of Cambridge; Estados Unidos Fil: Alonso Pruneda, José Miguel. University of Cambridge; Estados Unidos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; España. University of California at Berkeley; Estados Unidos Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina Fil: Burnell, Gavin. University Of Leeds; Reino Unido. University of Cambridge; Estados Unidos Fil: Valdés Herrera, José P.. University of Cambridge; Estados Unidos Fil: Simons, Benjamin D.. University of Cambridge; Reino Unido Fil: Littlewood, Peter B.. University of Cambridge; Reino Unido Fil: Artacho, Emilio. University of Cambridge; Reino Unido Fil: Fert, Albert. Université Paris Sud; Francia Fil: Mathur, Neil D.. University of Cambridge; Reino Unido |
description |
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96240 Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-413 0028-0836 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96240 |
identifier_str_mv |
Hueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-413 0028-0836 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/nature05507 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature05507 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269849309413376 |
score |
13.13397 |