Reinforcement fibers in zinc-rich silicate anticorrosive coatings

Autores
Giudice, Carlos Alberto
Año de publicación
2012
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Well-known the electrochemical nature of most processes of corrosion, the technology of anticorrosive coatings is oriented in the direction of making products that control the development of electrode reactions and that generate the isolating of metal surface by applying films with very low permeability and high adhesion (Sorensen et al., 2011). The zinc-rich coatings and those modified with extenders and/or metal corrosion inhibitors display higher efficiency than other coatings. A problem that presents this type of primers is the extremely reactive characteristic of metallic zinc; consequently, the manufacturers formulate these coatings in two packages, which imply that the zinc must be incorporated to the vehicle in previous form to coating application (Jianjun et al., 2008 & Lei-lei & De-liang, 2010). Considering the concept of sacrificial anode (cathodic protection), coatings that consist of high purity zinc dust dispersed in organic and inorganic vehicles have been designed; in these materials, when applied in film form, there are close contacts of the particles among themselves and with the base or metallic substrate to be protected. The anodic reaction corresponds to the oxidation of zinc particles (loss of electrons) while the cathodic one usually involves oxygen reduction (gain of electrons) on the surface of iron or steel; the ?pressure? of electrons released by zinc prevents or controls the oxidation of the metal substrate. Theoretically, the protective mechanism is similar to a continuous layer of zinc applied by galvanizing with some differences because the differences because the coating film initially presents in general a considerable porosity (Jegannathan et al.,2006). The problems previously mentioned led to study other shapes and sizes of zinc particles. The physical and chemical properties as well as the behaviour against the corrosion of these primers are remarkably affected by quoted variables and in addition, by the PVC; thus, for example, it is possible to mention the laminar zinc, which was intensely studied by the authors in other manuscripts (Giudice et al., 2009 & Pereyra et al., 2007).The objective of this paper was study the influence of the content and of the nature of reinforcement fibers as well as the type of inorganic film-forming material, the average diameter of spherical zinc dust and the pigment volume concentration on performance of Environmentally friendly, inorganic coatings suitable for the protection of metal substrates. The formulation variables included: (i) two binders, one of them based on a laboratoryprepared nano solution lithium silicate of 7.5/1.0 silica/alkali molar and the other one a pure tetraethyl silicate conformed by 99% w/w monomer with an appropriate hydrolysis degree; (ii) two pigments based on spherical microzinc (D 50/50 4 and 8 µm); (iii) three types of reinforcement fibers used to improve the electric contact between two adjacent spherical zinc particles (graphite and silicon nitride that behave like semiconductor, and quartz that is a non-conductor as reference); (iv) three levels of reinforcement fibers (1.0, 1.5 and 2.0% w/w on coating solids) and finally, (v) six values of pigment volume concentration (from 57.5 to 70.0%)
Fil: Giudice, Carlos Alberto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina. Universidad Tecnologica Nacional. Facultad Regional La Plata; Argentina
Materia
ZINC-RICH
SILICATE
REINFORCEMENT FIBERS
ANTICORROSIVE COATINGS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137501

id CONICETDig_f6b4aa32e2f27ff5aa7ad7e0754d7324
oai_identifier_str oai:ri.conicet.gov.ar:11336/137501
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reinforcement fibers in zinc-rich silicate anticorrosive coatingsGiudice, Carlos AlbertoZINC-RICHSILICATEREINFORCEMENT FIBERSANTICORROSIVE COATINGShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Well-known the electrochemical nature of most processes of corrosion, the technology of anticorrosive coatings is oriented in the direction of making products that control the development of electrode reactions and that generate the isolating of metal surface by applying films with very low permeability and high adhesion (Sorensen et al., 2011). The zinc-rich coatings and those modified with extenders and/or metal corrosion inhibitors display higher efficiency than other coatings. A problem that presents this type of primers is the extremely reactive characteristic of metallic zinc; consequently, the manufacturers formulate these coatings in two packages, which imply that the zinc must be incorporated to the vehicle in previous form to coating application (Jianjun et al., 2008 & Lei-lei & De-liang, 2010). Considering the concept of sacrificial anode (cathodic protection), coatings that consist of high purity zinc dust dispersed in organic and inorganic vehicles have been designed; in these materials, when applied in film form, there are close contacts of the particles among themselves and with the base or metallic substrate to be protected. The anodic reaction corresponds to the oxidation of zinc particles (loss of electrons) while the cathodic one usually involves oxygen reduction (gain of electrons) on the surface of iron or steel; the ?pressure? of electrons released by zinc prevents or controls the oxidation of the metal substrate. Theoretically, the protective mechanism is similar to a continuous layer of zinc applied by galvanizing with some differences because the differences because the coating film initially presents in general a considerable porosity (Jegannathan et al.,2006). The problems previously mentioned led to study other shapes and sizes of zinc particles. The physical and chemical properties as well as the behaviour against the corrosion of these primers are remarkably affected by quoted variables and in addition, by the PVC; thus, for example, it is possible to mention the laminar zinc, which was intensely studied by the authors in other manuscripts (Giudice et al., 2009 & Pereyra et al., 2007).The objective of this paper was study the influence of the content and of the nature of reinforcement fibers as well as the type of inorganic film-forming material, the average diameter of spherical zinc dust and the pigment volume concentration on performance of Environmentally friendly, inorganic coatings suitable for the protection of metal substrates. The formulation variables included: (i) two binders, one of them based on a laboratoryprepared nano solution lithium silicate of 7.5/1.0 silica/alkali molar and the other one a pure tetraethyl silicate conformed by 99% w/w monomer with an appropriate hydrolysis degree; (ii) two pigments based on spherical microzinc (D 50/50 4 and 8 µm); (iii) three types of reinforcement fibers used to improve the electric contact between two adjacent spherical zinc particles (graphite and silicon nitride that behave like semiconductor, and quartz that is a non-conductor as reference); (iv) three levels of reinforcement fibers (1.0, 1.5 and 2.0% w/w on coating solids) and finally, (v) six values of pigment volume concentration (from 57.5 to 70.0%)Fil: Giudice, Carlos Alberto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina. Universidad Tecnologica Nacional. Facultad Regional La Plata; ArgentinaIntechOpenHong, Shih2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137501Giudice, Carlos Alberto; Reinforcement fibers in zinc-rich silicate anticorrosive coatings; IntechOpen; 2012; 157-174978-953-51-0467-4CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/34485info:eu-repo/semantics/altIdentifier/doi/10.5772/34435info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:39Zoai:ri.conicet.gov.ar:11336/137501instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:40.047CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reinforcement fibers in zinc-rich silicate anticorrosive coatings
title Reinforcement fibers in zinc-rich silicate anticorrosive coatings
spellingShingle Reinforcement fibers in zinc-rich silicate anticorrosive coatings
Giudice, Carlos Alberto
ZINC-RICH
SILICATE
REINFORCEMENT FIBERS
ANTICORROSIVE COATINGS
title_short Reinforcement fibers in zinc-rich silicate anticorrosive coatings
title_full Reinforcement fibers in zinc-rich silicate anticorrosive coatings
title_fullStr Reinforcement fibers in zinc-rich silicate anticorrosive coatings
title_full_unstemmed Reinforcement fibers in zinc-rich silicate anticorrosive coatings
title_sort Reinforcement fibers in zinc-rich silicate anticorrosive coatings
dc.creator.none.fl_str_mv Giudice, Carlos Alberto
author Giudice, Carlos Alberto
author_facet Giudice, Carlos Alberto
author_role author
dc.contributor.none.fl_str_mv Hong, Shih
dc.subject.none.fl_str_mv ZINC-RICH
SILICATE
REINFORCEMENT FIBERS
ANTICORROSIVE COATINGS
topic ZINC-RICH
SILICATE
REINFORCEMENT FIBERS
ANTICORROSIVE COATINGS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Well-known the electrochemical nature of most processes of corrosion, the technology of anticorrosive coatings is oriented in the direction of making products that control the development of electrode reactions and that generate the isolating of metal surface by applying films with very low permeability and high adhesion (Sorensen et al., 2011). The zinc-rich coatings and those modified with extenders and/or metal corrosion inhibitors display higher efficiency than other coatings. A problem that presents this type of primers is the extremely reactive characteristic of metallic zinc; consequently, the manufacturers formulate these coatings in two packages, which imply that the zinc must be incorporated to the vehicle in previous form to coating application (Jianjun et al., 2008 & Lei-lei & De-liang, 2010). Considering the concept of sacrificial anode (cathodic protection), coatings that consist of high purity zinc dust dispersed in organic and inorganic vehicles have been designed; in these materials, when applied in film form, there are close contacts of the particles among themselves and with the base or metallic substrate to be protected. The anodic reaction corresponds to the oxidation of zinc particles (loss of electrons) while the cathodic one usually involves oxygen reduction (gain of electrons) on the surface of iron or steel; the ?pressure? of electrons released by zinc prevents or controls the oxidation of the metal substrate. Theoretically, the protective mechanism is similar to a continuous layer of zinc applied by galvanizing with some differences because the differences because the coating film initially presents in general a considerable porosity (Jegannathan et al.,2006). The problems previously mentioned led to study other shapes and sizes of zinc particles. The physical and chemical properties as well as the behaviour against the corrosion of these primers are remarkably affected by quoted variables and in addition, by the PVC; thus, for example, it is possible to mention the laminar zinc, which was intensely studied by the authors in other manuscripts (Giudice et al., 2009 & Pereyra et al., 2007).The objective of this paper was study the influence of the content and of the nature of reinforcement fibers as well as the type of inorganic film-forming material, the average diameter of spherical zinc dust and the pigment volume concentration on performance of Environmentally friendly, inorganic coatings suitable for the protection of metal substrates. The formulation variables included: (i) two binders, one of them based on a laboratoryprepared nano solution lithium silicate of 7.5/1.0 silica/alkali molar and the other one a pure tetraethyl silicate conformed by 99% w/w monomer with an appropriate hydrolysis degree; (ii) two pigments based on spherical microzinc (D 50/50 4 and 8 µm); (iii) three types of reinforcement fibers used to improve the electric contact between two adjacent spherical zinc particles (graphite and silicon nitride that behave like semiconductor, and quartz that is a non-conductor as reference); (iv) three levels of reinforcement fibers (1.0, 1.5 and 2.0% w/w on coating solids) and finally, (v) six values of pigment volume concentration (from 57.5 to 70.0%)
Fil: Giudice, Carlos Alberto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina. Universidad Tecnologica Nacional. Facultad Regional La Plata; Argentina
description Well-known the electrochemical nature of most processes of corrosion, the technology of anticorrosive coatings is oriented in the direction of making products that control the development of electrode reactions and that generate the isolating of metal surface by applying films with very low permeability and high adhesion (Sorensen et al., 2011). The zinc-rich coatings and those modified with extenders and/or metal corrosion inhibitors display higher efficiency than other coatings. A problem that presents this type of primers is the extremely reactive characteristic of metallic zinc; consequently, the manufacturers formulate these coatings in two packages, which imply that the zinc must be incorporated to the vehicle in previous form to coating application (Jianjun et al., 2008 & Lei-lei & De-liang, 2010). Considering the concept of sacrificial anode (cathodic protection), coatings that consist of high purity zinc dust dispersed in organic and inorganic vehicles have been designed; in these materials, when applied in film form, there are close contacts of the particles among themselves and with the base or metallic substrate to be protected. The anodic reaction corresponds to the oxidation of zinc particles (loss of electrons) while the cathodic one usually involves oxygen reduction (gain of electrons) on the surface of iron or steel; the ?pressure? of electrons released by zinc prevents or controls the oxidation of the metal substrate. Theoretically, the protective mechanism is similar to a continuous layer of zinc applied by galvanizing with some differences because the differences because the coating film initially presents in general a considerable porosity (Jegannathan et al.,2006). The problems previously mentioned led to study other shapes and sizes of zinc particles. The physical and chemical properties as well as the behaviour against the corrosion of these primers are remarkably affected by quoted variables and in addition, by the PVC; thus, for example, it is possible to mention the laminar zinc, which was intensely studied by the authors in other manuscripts (Giudice et al., 2009 & Pereyra et al., 2007).The objective of this paper was study the influence of the content and of the nature of reinforcement fibers as well as the type of inorganic film-forming material, the average diameter of spherical zinc dust and the pigment volume concentration on performance of Environmentally friendly, inorganic coatings suitable for the protection of metal substrates. The formulation variables included: (i) two binders, one of them based on a laboratoryprepared nano solution lithium silicate of 7.5/1.0 silica/alkali molar and the other one a pure tetraethyl silicate conformed by 99% w/w monomer with an appropriate hydrolysis degree; (ii) two pigments based on spherical microzinc (D 50/50 4 and 8 µm); (iii) three types of reinforcement fibers used to improve the electric contact between two adjacent spherical zinc particles (graphite and silicon nitride that behave like semiconductor, and quartz that is a non-conductor as reference); (iv) three levels of reinforcement fibers (1.0, 1.5 and 2.0% w/w on coating solids) and finally, (v) six values of pigment volume concentration (from 57.5 to 70.0%)
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137501
Giudice, Carlos Alberto; Reinforcement fibers in zinc-rich silicate anticorrosive coatings; IntechOpen; 2012; 157-174
978-953-51-0467-4
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137501
identifier_str_mv Giudice, Carlos Alberto; Reinforcement fibers in zinc-rich silicate anticorrosive coatings; IntechOpen; 2012; 157-174
978-953-51-0467-4
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/34485
info:eu-repo/semantics/altIdentifier/doi/10.5772/34435
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614231899504640
score 13.070432