The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz
- Autores
- Castelletti, Gabriela Marta; Dubner, Gloria Mabel; Brogan, C.; Kassim, N. E.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims. We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies (HPBW 37 at 74 MHz, and 13 at 324 MHz), have been used in combination with existing 1442 MHz radio data, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral continuum properties of this SNR. Methods. The observations were carried out with the VLA simultaneously at 74 and 324 MHz in the A and B configurations and at 324 MHz in the C and D configurations. The radio continuum spectral index distribution was derived through direct comparison of the combined data at 74, 324, and 1442 MHz. In addition, to isolate and identify different spectral components, tomographic spectral analysis was performed. Results. We measured total flux densities of 634 Jy and 411 Jy at 74 and 324 MHz, respectively, for W44, and from a careful assessment of published values between 22 and 10 700 MHz derived a global integrated continuum spectral index α = −0.37 ± 0.02. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with α ∼ −0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with α varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and becomes concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model. The positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. Such spectral inversion is a classic signature of thermal absorption, either from ionized gas in the postshock region, from the HII region itself, or both. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a coincident molecular cloud. No spectral index trace was found indicating any connection between the associated pulsar PSR B1953+0.1 and the surrounding shell, nor between the SNR and the 3EG 1853+0114 γ-ray source proposed to be associated with W44. The comparison of the 324 MHz image with a 4.5 µm IR image obtained with Spitzer underscored an impressive correspondence between emission both to the north and west sides of W44, while the comparison with ROSAT and Chandra images confirm that the synchrotron radio emission surrounds the thermal X-ray radiation. Ke
Fil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Brogan, C.. National Radio Astronomy Observatory; Estados Unidos
Fil: Kassim, N. E.. Spece Sciences División. Naval Research Laboratory; Estados Unidos - Materia
-
ISM: W44
ISM: SUPERNOVA REMNANTS
RADIO CONTINUUM: ISM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21998
Ver los metadatos del registro completo
id |
CONICETDig_f68041d57c2cb04b6fabf51b4d14e351 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21998 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHzCastelletti, Gabriela MartaDubner, Gloria MabelBrogan, C.Kassim, N. E.ISM: W44ISM: SUPERNOVA REMNANTSRADIO CONTINUUM: ISMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Aims. We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies (HPBW 37 at 74 MHz, and 13 at 324 MHz), have been used in combination with existing 1442 MHz radio data, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral continuum properties of this SNR. Methods. The observations were carried out with the VLA simultaneously at 74 and 324 MHz in the A and B configurations and at 324 MHz in the C and D configurations. The radio continuum spectral index distribution was derived through direct comparison of the combined data at 74, 324, and 1442 MHz. In addition, to isolate and identify different spectral components, tomographic spectral analysis was performed. Results. We measured total flux densities of 634 Jy and 411 Jy at 74 and 324 MHz, respectively, for W44, and from a careful assessment of published values between 22 and 10 700 MHz derived a global integrated continuum spectral index α = −0.37 ± 0.02. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with α ∼ −0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with α varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and becomes concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model. The positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. Such spectral inversion is a classic signature of thermal absorption, either from ionized gas in the postshock region, from the HII region itself, or both. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a coincident molecular cloud. No spectral index trace was found indicating any connection between the associated pulsar PSR B1953+0.1 and the surrounding shell, nor between the SNR and the 3EG 1853+0114 γ-ray source proposed to be associated with W44. The comparison of the 324 MHz image with a 4.5 µm IR image obtained with Spitzer underscored an impressive correspondence between emission both to the north and west sides of W44, while the comparison with ROSAT and Chandra images confirm that the synchrotron radio emission surrounds the thermal X-ray radiation. KeFil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Brogan, C.. National Radio Astronomy Observatory; Estados UnidosFil: Kassim, N. E.. Spece Sciences División. Naval Research Laboratory; Estados UnidosEDP Sciences2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21998Castelletti, Gabriela Marta; Dubner, Gloria Mabel; Brogan, C.; Kassim, N. E.; The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz; EDP Sciences; Astronomy and Astrophysics; 471; 2; 12-2007; 537-5490004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20077062info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2007/32/aa7062-07/aa7062-07.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/astro-ph/0702746info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:13Zoai:ri.conicet.gov.ar:11336/21998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:13.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
title |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
spellingShingle |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz Castelletti, Gabriela Marta ISM: W44 ISM: SUPERNOVA REMNANTS RADIO CONTINUUM: ISM |
title_short |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
title_full |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
title_fullStr |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
title_full_unstemmed |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
title_sort |
The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz |
dc.creator.none.fl_str_mv |
Castelletti, Gabriela Marta Dubner, Gloria Mabel Brogan, C. Kassim, N. E. |
author |
Castelletti, Gabriela Marta |
author_facet |
Castelletti, Gabriela Marta Dubner, Gloria Mabel Brogan, C. Kassim, N. E. |
author_role |
author |
author2 |
Dubner, Gloria Mabel Brogan, C. Kassim, N. E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ISM: W44 ISM: SUPERNOVA REMNANTS RADIO CONTINUUM: ISM |
topic |
ISM: W44 ISM: SUPERNOVA REMNANTS RADIO CONTINUUM: ISM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Aims. We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies (HPBW 37 at 74 MHz, and 13 at 324 MHz), have been used in combination with existing 1442 MHz radio data, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral continuum properties of this SNR. Methods. The observations were carried out with the VLA simultaneously at 74 and 324 MHz in the A and B configurations and at 324 MHz in the C and D configurations. The radio continuum spectral index distribution was derived through direct comparison of the combined data at 74, 324, and 1442 MHz. In addition, to isolate and identify different spectral components, tomographic spectral analysis was performed. Results. We measured total flux densities of 634 Jy and 411 Jy at 74 and 324 MHz, respectively, for W44, and from a careful assessment of published values between 22 and 10 700 MHz derived a global integrated continuum spectral index α = −0.37 ± 0.02. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with α ∼ −0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with α varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and becomes concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model. The positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. Such spectral inversion is a classic signature of thermal absorption, either from ionized gas in the postshock region, from the HII region itself, or both. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a coincident molecular cloud. No spectral index trace was found indicating any connection between the associated pulsar PSR B1953+0.1 and the surrounding shell, nor between the SNR and the 3EG 1853+0114 γ-ray source proposed to be associated with W44. The comparison of the 324 MHz image with a 4.5 µm IR image obtained with Spitzer underscored an impressive correspondence between emission both to the north and west sides of W44, while the comparison with ROSAT and Chandra images confirm that the synchrotron radio emission surrounds the thermal X-ray radiation. Ke Fil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Brogan, C.. National Radio Astronomy Observatory; Estados Unidos Fil: Kassim, N. E.. Spece Sciences División. Naval Research Laboratory; Estados Unidos |
description |
Aims. We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies (HPBW 37 at 74 MHz, and 13 at 324 MHz), have been used in combination with existing 1442 MHz radio data, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral continuum properties of this SNR. Methods. The observations were carried out with the VLA simultaneously at 74 and 324 MHz in the A and B configurations and at 324 MHz in the C and D configurations. The radio continuum spectral index distribution was derived through direct comparison of the combined data at 74, 324, and 1442 MHz. In addition, to isolate and identify different spectral components, tomographic spectral analysis was performed. Results. We measured total flux densities of 634 Jy and 411 Jy at 74 and 324 MHz, respectively, for W44, and from a careful assessment of published values between 22 and 10 700 MHz derived a global integrated continuum spectral index α = −0.37 ± 0.02. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with α ∼ −0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with α varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and becomes concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model. The positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. Such spectral inversion is a classic signature of thermal absorption, either from ionized gas in the postshock region, from the HII region itself, or both. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a coincident molecular cloud. No spectral index trace was found indicating any connection between the associated pulsar PSR B1953+0.1 and the surrounding shell, nor between the SNR and the 3EG 1853+0114 γ-ray source proposed to be associated with W44. The comparison of the 324 MHz image with a 4.5 µm IR image obtained with Spitzer underscored an impressive correspondence between emission both to the north and west sides of W44, while the comparison with ROSAT and Chandra images confirm that the synchrotron radio emission surrounds the thermal X-ray radiation. Ke |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21998 Castelletti, Gabriela Marta; Dubner, Gloria Mabel; Brogan, C.; Kassim, N. E.; The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz; EDP Sciences; Astronomy and Astrophysics; 471; 2; 12-2007; 537-549 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21998 |
identifier_str_mv |
Castelletti, Gabriela Marta; Dubner, Gloria Mabel; Brogan, C.; Kassim, N. E.; The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz; EDP Sciences; Astronomy and Astrophysics; 471; 2; 12-2007; 537-549 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20077062 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2007/32/aa7062-07/aa7062-07.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/astro-ph/0702746 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614008718491648 |
score |
13.070432 |