Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees

Autores
Ramirez, Martin Javier; Grismado, Cristian José
Año de publicación
2023
Idioma
inglés
Tipo de recurso
conjunto de datos
Estado
Descripción
Alignments of 6 DNA markers and morphological data for the phylogenetic analysis of teh genus Paranita. For the phylogenetic analysis, we composed a dataset combining eight traditional target markers from the analysis of Wheeler et al. (2017) (12s, 16s, 18s, 28s, co1, H3), plus sequences from other sources and new co1 sequences for P. paulae (BOLD CORAR075, GenBank OR515542, MACN-Ar 30271) and Trachelopachys sericeus (BOLD SPDAR1264-15, GenBank OR515543, MACN-Ar 34546). Some markers were retrieved as bycatch from Sequence Read Archive (SRA) phylogenomic sequences (see publication for details). We used the morphological data accumulated in the datasets of Azevedo et al. (2022a) and Ramírez (2014). The analyses under maximum likelihood were made with IQ-TREE 2.2.0 (Minh et al. 2020). Models for each target-gene were selected by Bayesian information criterion with ModelFinder (Kalyaanamoorthy et al. 2017). The models selected for the sequence data were as follows: TIM2+F+G4 (12s and 16s), TNe+R2 (18s, co1-2, h3-1, h3-2), GTR+F+I+G4 (28s), GTR+F+I+G4 (co1-1), GTR+F+I+G4 (co1-3), GTR+F+I+G4 (h3-3). The morphological data was partitioned into two datasets, one with the unordered characters, another with the ordered ones, and analyzed with the Mk and Mk-ordered models, respectively, both with correction for ascertainment bias for the absence of invariant characters. Prior to analysis, all invariant characters were removed, and polymorphic entries were replaced by missing entries. The branch support was estimated with 1000 rounds of ultrafast bootstrap (Hoang et al., 2018). The analyses under maximum parsimony were made with TNT v 1.6 (Goloboff & Catalano, 2016) under equal weights using an exact search of implicit enumeration. Branch support was measured with 1000 rounds of jackknifing, representing frequencies over the optimal tree. See publication for references and details.
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Fil: Grismado, Cristian José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212403

id CONICETDig_f653b4ba9035bb680e88222ae1f67b8d
oai_identifier_str oai:ri.conicet.gov.ar:11336/212403
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic treesRamirez, Martin JavierGrismado, Cristian Joséhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Alignments of 6 DNA markers and morphological data for the phylogenetic analysis of teh genus Paranita. For the phylogenetic analysis, we composed a dataset combining eight traditional target markers from the analysis of Wheeler et al. (2017) (12s, 16s, 18s, 28s, co1, H3), plus sequences from other sources and new co1 sequences for P. paulae (BOLD CORAR075, GenBank OR515542, MACN-Ar 30271) and Trachelopachys sericeus (BOLD SPDAR1264-15, GenBank OR515543, MACN-Ar 34546). Some markers were retrieved as bycatch from Sequence Read Archive (SRA) phylogenomic sequences (see publication for details). We used the morphological data accumulated in the datasets of Azevedo et al. (2022a) and Ramírez (2014). The analyses under maximum likelihood were made with IQ-TREE 2.2.0 (Minh et al. 2020). Models for each target-gene were selected by Bayesian information criterion with ModelFinder (Kalyaanamoorthy et al. 2017). The models selected for the sequence data were as follows: TIM2+F+G4 (12s and 16s), TNe+R2 (18s, co1-2, h3-1, h3-2), GTR+F+I+G4 (28s), GTR+F+I+G4 (co1-1), GTR+F+I+G4 (co1-3), GTR+F+I+G4 (h3-3). The morphological data was partitioned into two datasets, one with the unordered characters, another with the ordered ones, and analyzed with the Mk and Mk-ordered models, respectively, both with correction for ascertainment bias for the absence of invariant characters. Prior to analysis, all invariant characters were removed, and polymorphic entries were replaced by missing entries. The branch support was estimated with 1000 rounds of ultrafast bootstrap (Hoang et al., 2018). The analyses under maximum parsimony were made with TNT v 1.6 (Goloboff & Catalano, 2016) under equal weights using an exact search of implicit enumeration. Branch support was measured with 1000 rounds of jackknifing, representing frequencies over the optimal tree. See publication for references and details.Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Grismado, Cristian José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina2023info:eu-repo/date/embargoEnd/2024-09-01info:ar-repo/semantics/conjuntoDeDatosv1.0info:eu-repo/semantics/dataSetapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamapplication/octet-streamhttp://hdl.handle.net/11336/212403Ramirez, Martin Javier; Grismado, Cristian José; (2023): Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/212403CONICET DigitalCONICETenginfo:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/2745-2019-PICTinfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:30Zoai:ri.conicet.gov.ar:11336/212403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:30.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
title Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
spellingShingle Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
Ramirez, Martin Javier
title_short Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
title_full Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
title_fullStr Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
title_full_unstemmed Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
title_sort Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees
dc.creator.none.fl_str_mv Ramirez, Martin Javier
Grismado, Cristian José
author Ramirez, Martin Javier
author_facet Ramirez, Martin Javier
Grismado, Cristian José
author_role author
author2 Grismado, Cristian José
author2_role author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Alignments of 6 DNA markers and morphological data for the phylogenetic analysis of teh genus Paranita. For the phylogenetic analysis, we composed a dataset combining eight traditional target markers from the analysis of Wheeler et al. (2017) (12s, 16s, 18s, 28s, co1, H3), plus sequences from other sources and new co1 sequences for P. paulae (BOLD CORAR075, GenBank OR515542, MACN-Ar 30271) and Trachelopachys sericeus (BOLD SPDAR1264-15, GenBank OR515543, MACN-Ar 34546). Some markers were retrieved as bycatch from Sequence Read Archive (SRA) phylogenomic sequences (see publication for details). We used the morphological data accumulated in the datasets of Azevedo et al. (2022a) and Ramírez (2014). The analyses under maximum likelihood were made with IQ-TREE 2.2.0 (Minh et al. 2020). Models for each target-gene were selected by Bayesian information criterion with ModelFinder (Kalyaanamoorthy et al. 2017). The models selected for the sequence data were as follows: TIM2+F+G4 (12s and 16s), TNe+R2 (18s, co1-2, h3-1, h3-2), GTR+F+I+G4 (28s), GTR+F+I+G4 (co1-1), GTR+F+I+G4 (co1-3), GTR+F+I+G4 (h3-3). The morphological data was partitioned into two datasets, one with the unordered characters, another with the ordered ones, and analyzed with the Mk and Mk-ordered models, respectively, both with correction for ascertainment bias for the absence of invariant characters. Prior to analysis, all invariant characters were removed, and polymorphic entries were replaced by missing entries. The branch support was estimated with 1000 rounds of ultrafast bootstrap (Hoang et al., 2018). The analyses under maximum parsimony were made with TNT v 1.6 (Goloboff & Catalano, 2016) under equal weights using an exact search of implicit enumeration. Branch support was measured with 1000 rounds of jackknifing, representing frequencies over the optimal tree. See publication for references and details.
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
Fil: Grismado, Cristian José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
description Alignments of 6 DNA markers and morphological data for the phylogenetic analysis of teh genus Paranita. For the phylogenetic analysis, we composed a dataset combining eight traditional target markers from the analysis of Wheeler et al. (2017) (12s, 16s, 18s, 28s, co1, H3), plus sequences from other sources and new co1 sequences for P. paulae (BOLD CORAR075, GenBank OR515542, MACN-Ar 30271) and Trachelopachys sericeus (BOLD SPDAR1264-15, GenBank OR515543, MACN-Ar 34546). Some markers were retrieved as bycatch from Sequence Read Archive (SRA) phylogenomic sequences (see publication for details). We used the morphological data accumulated in the datasets of Azevedo et al. (2022a) and Ramírez (2014). The analyses under maximum likelihood were made with IQ-TREE 2.2.0 (Minh et al. 2020). Models for each target-gene were selected by Bayesian information criterion with ModelFinder (Kalyaanamoorthy et al. 2017). The models selected for the sequence data were as follows: TIM2+F+G4 (12s and 16s), TNe+R2 (18s, co1-2, h3-1, h3-2), GTR+F+I+G4 (28s), GTR+F+I+G4 (co1-1), GTR+F+I+G4 (co1-3), GTR+F+I+G4 (h3-3). The morphological data was partitioned into two datasets, one with the unordered characters, another with the ordered ones, and analyzed with the Mk and Mk-ordered models, respectively, both with correction for ascertainment bias for the absence of invariant characters. Prior to analysis, all invariant characters were removed, and polymorphic entries were replaced by missing entries. The branch support was estimated with 1000 rounds of ultrafast bootstrap (Hoang et al., 2018). The analyses under maximum parsimony were made with TNT v 1.6 (Goloboff & Catalano, 2016) under equal weights using an exact search of implicit enumeration. Branch support was measured with 1000 rounds of jackknifing, representing frequencies over the optimal tree. See publication for references and details.
publishDate 2023
dc.date.none.fl_str_mv 2023
info:eu-repo/date/embargoEnd/2024-09-01
dc.type.none.fl_str_mv info:ar-repo/semantics/conjuntoDeDatos
v1.0
info:eu-repo/semantics/dataSet
format dataSet
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212403
Ramirez, Martin Javier; Grismado, Cristian José; (2023): Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/212403
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212403
identifier_str_mv Ramirez, Martin Javier; Grismado, Cristian José; (2023): Paranita, a new genus of spiders from northeastern Argentina (Araneae, Trachelidae): Phylogenetic datasets for phylogenetic analyses, and phylogenetic trees. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/212403
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/2745-2019-PICT
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
application/octet-stream
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614032856711168
score 13.070432