The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
- Autores
- Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; Welker, Charlotte; Pearce, Frazer; Gray, Meghan; Knebe, Alexander; Cui, Weiguang; Yepes, Gustavo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.
Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; Alemania
Fil: Welker, Charlotte. City University of New York; Estados Unidos
Fil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España
Fil: Cui, Weiguang. Universidad Autónoma de Madrid; España
Fil: Yepes, Gustavo. Universidad Autónoma de Madrid; España - Materia
-
GALAXIES: CLUSTERS: GENERAL
LARGE-SCALE STRUCTURE OF UNIVERSE
METHODS: NUMERICAL
METHODS: STATISTICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262944
Ver los metadatos del registro completo
id |
CONICETDig_f65176685445e384a4a65bd756433d50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262944 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundingsRost, Agustín MatíasNuza, Sebastian ErnestoStasyszyn, Federico AndresKuchner, UlrikeHoeft, MatthiasWelker, CharlottePearce, FrazerGray, MeghanKnebe, AlexanderCui, WeiguangYepes, GustavoGALAXIES: CLUSTERS: GENERALLARGE-SCALE STRUCTURE OF UNIVERSEMETHODS: NUMERICALMETHODS: STATISTICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; AlemaniaFil: Welker, Charlotte. City University of New York; Estados UnidosFil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Knebe, Alexander. Universidad Autónoma de Madrid; EspañaFil: Cui, Weiguang. Universidad Autónoma de Madrid; EspañaFil: Yepes, Gustavo. Universidad Autónoma de Madrid; EspañaWiley Blackwell Publishing, Inc2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262944Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-13160035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:23Zoai:ri.conicet.gov.ar:11336/262944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:23.9CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
title |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
spellingShingle |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings Rost, Agustín Matías GALAXIES: CLUSTERS: GENERAL LARGE-SCALE STRUCTURE OF UNIVERSE METHODS: NUMERICAL METHODS: STATISTICAL |
title_short |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
title_full |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
title_fullStr |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
title_full_unstemmed |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
title_sort |
The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings |
dc.creator.none.fl_str_mv |
Rost, Agustín Matías Nuza, Sebastian Ernesto Stasyszyn, Federico Andres Kuchner, Ulrike Hoeft, Matthias Welker, Charlotte Pearce, Frazer Gray, Meghan Knebe, Alexander Cui, Weiguang Yepes, Gustavo |
author |
Rost, Agustín Matías |
author_facet |
Rost, Agustín Matías Nuza, Sebastian Ernesto Stasyszyn, Federico Andres Kuchner, Ulrike Hoeft, Matthias Welker, Charlotte Pearce, Frazer Gray, Meghan Knebe, Alexander Cui, Weiguang Yepes, Gustavo |
author_role |
author |
author2 |
Nuza, Sebastian Ernesto Stasyszyn, Federico Andres Kuchner, Ulrike Hoeft, Matthias Welker, Charlotte Pearce, Frazer Gray, Meghan Knebe, Alexander Cui, Weiguang Yepes, Gustavo |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
GALAXIES: CLUSTERS: GENERAL LARGE-SCALE STRUCTURE OF UNIVERSE METHODS: NUMERICAL METHODS: STATISTICAL |
topic |
GALAXIES: CLUSTERS: GENERAL LARGE-SCALE STRUCTURE OF UNIVERSE METHODS: NUMERICAL METHODS: STATISTICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample. Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; Alemania Fil: Welker, Charlotte. City University of New York; Estados Unidos Fil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos Fil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España Fil: Cui, Weiguang. Universidad Autónoma de Madrid; España Fil: Yepes, Gustavo. Universidad Autónoma de Madrid; España |
description |
Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262944 Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-1316 0035-8711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262944 |
identifier_str_mv |
Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-1316 0035-8711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3208 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613607292141568 |
score |
13.070432 |