The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings

Autores
Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; Welker, Charlotte; Pearce, Frazer; Gray, Meghan; Knebe, Alexander; Cui, Weiguang; Yepes, Gustavo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.
Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; Alemania
Fil: Welker, Charlotte. City University of New York; Estados Unidos
Fil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España
Fil: Cui, Weiguang. Universidad Autónoma de Madrid; España
Fil: Yepes, Gustavo. Universidad Autónoma de Madrid; España
Materia
GALAXIES: CLUSTERS: GENERAL
LARGE-SCALE STRUCTURE OF UNIVERSE
METHODS: NUMERICAL
METHODS: STATISTICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/262944

id CONICETDig_f65176685445e384a4a65bd756433d50
oai_identifier_str oai:ri.conicet.gov.ar:11336/262944
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundingsRost, Agustín MatíasNuza, Sebastian ErnestoStasyszyn, Federico AndresKuchner, UlrikeHoeft, MatthiasWelker, CharlottePearce, FrazerGray, MeghanKnebe, AlexanderCui, WeiguangYepes, GustavoGALAXIES: CLUSTERS: GENERALLARGE-SCALE STRUCTURE OF UNIVERSEMETHODS: NUMERICALMETHODS: STATISTICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; AlemaniaFil: Welker, Charlotte. City University of New York; Estados UnidosFil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Knebe, Alexander. Universidad Autónoma de Madrid; EspañaFil: Cui, Weiguang. Universidad Autónoma de Madrid; EspañaFil: Yepes, Gustavo. Universidad Autónoma de Madrid; EspañaWiley Blackwell Publishing, Inc2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262944Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-13160035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:23Zoai:ri.conicet.gov.ar:11336/262944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:23.9CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
title The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
spellingShingle The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
Rost, Agustín Matías
GALAXIES: CLUSTERS: GENERAL
LARGE-SCALE STRUCTURE OF UNIVERSE
METHODS: NUMERICAL
METHODS: STATISTICAL
title_short The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
title_full The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
title_fullStr The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
title_full_unstemmed The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
title_sort The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings
dc.creator.none.fl_str_mv Rost, Agustín Matías
Nuza, Sebastian Ernesto
Stasyszyn, Federico Andres
Kuchner, Ulrike
Hoeft, Matthias
Welker, Charlotte
Pearce, Frazer
Gray, Meghan
Knebe, Alexander
Cui, Weiguang
Yepes, Gustavo
author Rost, Agustín Matías
author_facet Rost, Agustín Matías
Nuza, Sebastian Ernesto
Stasyszyn, Federico Andres
Kuchner, Ulrike
Hoeft, Matthias
Welker, Charlotte
Pearce, Frazer
Gray, Meghan
Knebe, Alexander
Cui, Weiguang
Yepes, Gustavo
author_role author
author2 Nuza, Sebastian Ernesto
Stasyszyn, Federico Andres
Kuchner, Ulrike
Hoeft, Matthias
Welker, Charlotte
Pearce, Frazer
Gray, Meghan
Knebe, Alexander
Cui, Weiguang
Yepes, Gustavo
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GALAXIES: CLUSTERS: GENERAL
LARGE-SCALE STRUCTURE OF UNIVERSE
METHODS: NUMERICAL
METHODS: STATISTICAL
topic GALAXIES: CLUSTERS: GENERAL
LARGE-SCALE STRUCTURE OF UNIVERSE
METHODS: NUMERICAL
METHODS: STATISTICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.
Fil: Rost, Agustín Matías. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Nuza, Sebastian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Stasyszyn, Federico Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Kuchner, Ulrike. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Hoeft, Matthias. Thüringer Landessternwarte Tautenburg; Alemania
Fil: Welker, Charlotte. City University of New York; Estados Unidos
Fil: Pearce, Frazer. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Gray, Meghan. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España
Fil: Cui, Weiguang. Universidad Autónoma de Madrid; España
Fil: Yepes, Gustavo. Universidad Autónoma de Madrid; España
description Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project, we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns on to filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density–temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1−2 Mpc/h for a typical galaxy cluster in our sample.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/262944
Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-1316
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/262944
identifier_str_mv Rost, Agustín Matías; Nuza, Sebastian Ernesto; Stasyszyn, Federico Andres; Kuchner, Ulrike; Hoeft, Matthias; et al.; The three hundred project: thermodynamical properties, shocks, and gas dynamics in simulated galaxy cluster filaments and their surroundings; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 1; 1-2024; 1301-1316
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613607292141568
score 13.070432