Near-IR imaging towards a puzzling young stellar object precessing jet
- Autores
- Paron, Sergio Ariel; Fariña, C.; Ortega, Martin Eduardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims. The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3−2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods. Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1−0 S(1), H2 2−1 S(1), Brγ, and CO 2−0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 000 .35 and 000 .45. Results. The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuumsubtracted image reveals several knots and filaments at a larger spatial scale around IRS. These perfect match the distribution of the red- and blueshifted molecular outflows discovered in our previous work. An unresolved system of YSOs is suggested to explain the distribution of the analyzed near-IR features and the molecular outflows, which in turn explains the jet precession through tidal interactions
Fil: Paron, Sergio Ariel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Fariña, C.. Isaac Newton Group of Telescopes; España
Fil: Ortega, Martin Eduardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Stars: formation
Stars: protostars
ISM: jets and outflows - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21555
Ver los metadatos del registro completo
id |
CONICETDig_f64b02bb7dec27192de9e6624b47630f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21555 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Near-IR imaging towards a puzzling young stellar object precessing jetParon, Sergio ArielFariña, C.Ortega, Martin EduardoStars: formationStars: protostarsISM: jets and outflowshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Aims. The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3−2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods. Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1−0 S(1), H2 2−1 S(1), Brγ, and CO 2−0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 000 .35 and 000 .45. Results. The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuumsubtracted image reveals several knots and filaments at a larger spatial scale around IRS. These perfect match the distribution of the red- and blueshifted molecular outflows discovered in our previous work. An unresolved system of YSOs is suggested to explain the distribution of the analyzed near-IR features and the molecular outflows, which in turn explains the jet precession through tidal interactionsFil: Paron, Sergio Ariel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fariña, C.. Isaac Newton Group of Telescopes; EspañaFil: Ortega, Martin Eduardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaEDP Sciences2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21555Paron, Sergio Ariel; Fariña, C.; Ortega, Martin Eduardo; Near-IR imaging towards a puzzling young stellar object precessing jet; EDP Sciences; Astronomy and Astrophysics; 593; A132; 8-2016; 1-80004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628495info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2016/09/aa28495-16/aa28495-16.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.01169info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:53Zoai:ri.conicet.gov.ar:11336/21555instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:54.2CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Near-IR imaging towards a puzzling young stellar object precessing jet |
title |
Near-IR imaging towards a puzzling young stellar object precessing jet |
spellingShingle |
Near-IR imaging towards a puzzling young stellar object precessing jet Paron, Sergio Ariel Stars: formation Stars: protostars ISM: jets and outflows |
title_short |
Near-IR imaging towards a puzzling young stellar object precessing jet |
title_full |
Near-IR imaging towards a puzzling young stellar object precessing jet |
title_fullStr |
Near-IR imaging towards a puzzling young stellar object precessing jet |
title_full_unstemmed |
Near-IR imaging towards a puzzling young stellar object precessing jet |
title_sort |
Near-IR imaging towards a puzzling young stellar object precessing jet |
dc.creator.none.fl_str_mv |
Paron, Sergio Ariel Fariña, C. Ortega, Martin Eduardo |
author |
Paron, Sergio Ariel |
author_facet |
Paron, Sergio Ariel Fariña, C. Ortega, Martin Eduardo |
author_role |
author |
author2 |
Fariña, C. Ortega, Martin Eduardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Stars: formation Stars: protostars ISM: jets and outflows |
topic |
Stars: formation Stars: protostars ISM: jets and outflows |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Aims. The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3−2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods. Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1−0 S(1), H2 2−1 S(1), Brγ, and CO 2−0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 000 .35 and 000 .45. Results. The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuumsubtracted image reveals several knots and filaments at a larger spatial scale around IRS. These perfect match the distribution of the red- and blueshifted molecular outflows discovered in our previous work. An unresolved system of YSOs is suggested to explain the distribution of the analyzed near-IR features and the molecular outflows, which in turn explains the jet precession through tidal interactions Fil: Paron, Sergio Ariel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Fariña, C.. Isaac Newton Group of Telescopes; España Fil: Ortega, Martin Eduardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
Aims. The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3−2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods. Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1−0 S(1), H2 2−1 S(1), Brγ, and CO 2−0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 000 .35 and 000 .45. Results. The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuumsubtracted image reveals several knots and filaments at a larger spatial scale around IRS. These perfect match the distribution of the red- and blueshifted molecular outflows discovered in our previous work. An unresolved system of YSOs is suggested to explain the distribution of the analyzed near-IR features and the molecular outflows, which in turn explains the jet precession through tidal interactions |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21555 Paron, Sergio Ariel; Fariña, C.; Ortega, Martin Eduardo; Near-IR imaging towards a puzzling young stellar object precessing jet; EDP Sciences; Astronomy and Astrophysics; 593; A132; 8-2016; 1-8 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21555 |
identifier_str_mv |
Paron, Sergio Ariel; Fariña, C.; Ortega, Martin Eduardo; Near-IR imaging towards a puzzling young stellar object precessing jet; EDP Sciences; Astronomy and Astrophysics; 593; A132; 8-2016; 1-8 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628495 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2016/09/aa28495-16/aa28495-16.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.01169 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083514352533504 |
score |
13.22299 |