Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments

Autores
Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.
Fil: Bridges, N. T.. University Johns Hopkins; Estados Unidos
Fil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Silva, S. L.. State University of Oregon; Estados Unidos
Fil: Zimbelman, J. R.. National Air and Space Museum; Estados Unidos
Fil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados Unidos
Materia
Ripples
Puna
Mars
Wind Tunnel
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18486

id CONICETDig_f63f1dfa398dbce90b57bb28aea47827
oai_identifier_str oai:ri.conicet.gov.ar:11336/18486
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experimentsBridges, N. T.Spagnuolo, Mauro Gabrielde Silva, S. L.Zimbelman, J. R.Neely, E. M.RipplesPunaMarsWind Tunnelhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.Fil: Bridges, N. T.. University Johns Hopkins; Estados UnidosFil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Silva, S. L.. State University of Oregon; Estados UnidosFil: Zimbelman, J. R.. National Air and Space Museum; Estados UnidosFil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados UnidosElsevier Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18486Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-601875-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aeolia.2015.01.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1875963715000117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:40Zoai:ri.conicet.gov.ar:11336/18486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:41.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
title Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
spellingShingle Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
Bridges, N. T.
Ripples
Puna
Mars
Wind Tunnel
title_short Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
title_full Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
title_fullStr Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
title_full_unstemmed Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
title_sort Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
dc.creator.none.fl_str_mv Bridges, N. T.
Spagnuolo, Mauro Gabriel
de Silva, S. L.
Zimbelman, J. R.
Neely, E. M.
author Bridges, N. T.
author_facet Bridges, N. T.
Spagnuolo, Mauro Gabriel
de Silva, S. L.
Zimbelman, J. R.
Neely, E. M.
author_role author
author2 Spagnuolo, Mauro Gabriel
de Silva, S. L.
Zimbelman, J. R.
Neely, E. M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ripples
Puna
Mars
Wind Tunnel
topic Ripples
Puna
Mars
Wind Tunnel
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.
Fil: Bridges, N. T.. University Johns Hopkins; Estados Unidos
Fil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Silva, S. L.. State University of Oregon; Estados Unidos
Fil: Zimbelman, J. R.. National Air and Space Museum; Estados Unidos
Fil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados Unidos
description Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18486
Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-60
1875-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18486
identifier_str_mv Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-60
1875-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aeolia.2015.01.007
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1875963715000117
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613036752502784
score 13.070432