Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments
- Autores
- Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.
Fil: Bridges, N. T.. University Johns Hopkins; Estados Unidos
Fil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Silva, S. L.. State University of Oregon; Estados Unidos
Fil: Zimbelman, J. R.. National Air and Space Museum; Estados Unidos
Fil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados Unidos - Materia
-
Ripples
Puna
Mars
Wind Tunnel - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18486
Ver los metadatos del registro completo
id |
CONICETDig_f63f1dfa398dbce90b57bb28aea47827 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18486 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experimentsBridges, N. T.Spagnuolo, Mauro Gabrielde Silva, S. L.Zimbelman, J. R.Neely, E. M.RipplesPunaMarsWind Tunnelhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.Fil: Bridges, N. T.. University Johns Hopkins; Estados UnidosFil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Silva, S. L.. State University of Oregon; Estados UnidosFil: Zimbelman, J. R.. National Air and Space Museum; Estados UnidosFil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados UnidosElsevier Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18486Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-601875-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aeolia.2015.01.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1875963715000117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:40Zoai:ri.conicet.gov.ar:11336/18486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:41.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
title |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
spellingShingle |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments Bridges, N. T. Ripples Puna Mars Wind Tunnel |
title_short |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
title_full |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
title_fullStr |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
title_full_unstemmed |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
title_sort |
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments |
dc.creator.none.fl_str_mv |
Bridges, N. T. Spagnuolo, Mauro Gabriel de Silva, S. L. Zimbelman, J. R. Neely, E. M. |
author |
Bridges, N. T. |
author_facet |
Bridges, N. T. Spagnuolo, Mauro Gabriel de Silva, S. L. Zimbelman, J. R. Neely, E. M. |
author_role |
author |
author2 |
Spagnuolo, Mauro Gabriel de Silva, S. L. Zimbelman, J. R. Neely, E. M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ripples Puna Mars Wind Tunnel |
topic |
Ripples Puna Mars Wind Tunnel |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way. Fil: Bridges, N. T.. University Johns Hopkins; Estados Unidos Fil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Silva, S. L.. State University of Oregon; Estados Unidos Fil: Zimbelman, J. R.. National Air and Space Museum; Estados Unidos Fil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados Unidos |
description |
Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18486 Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-60 1875-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18486 |
identifier_str_mv |
Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-60 1875-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aeolia.2015.01.007 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1875963715000117 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613036752502784 |
score |
13.070432 |