Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation
- Autores
- Megiatto, Jackson D.; Antoniuk Pablant, Antaeres; Sherman, Benjamin D.; Kodis, Gerdenis; Gervaldo, Miguel Andres; Moore, Thomas A.; Moore, Ana L.; Gust, Devens
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF 10•+-TCNP•-. A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.
Fil: Megiatto, Jackson D.. Arizona State University; Estados Unidos
Fil: Antoniuk Pablant, Antaeres. Arizona State University; Estados Unidos
Fil: Sherman, Benjamin D.. Arizona State University; Estados Unidos
Fil: Kodis, Gerdenis. Arizona State University; Estados Unidos
Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Moore, Thomas A.. Arizona State University; Estados Unidos
Fil: Moore, Ana L.. Arizona State University; Estados Unidos
Fil: Gust, Devens. Arizona State University; Estados Unidos - Materia
-
BIOMIMICRY
PHOTOCHEMISTRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/194735
Ver los metadatos del registro completo
id |
CONICETDig_f63d410dca3144354a7c3526b119bef0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/194735 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidationMegiatto, Jackson D.Antoniuk Pablant, AntaeresSherman, Benjamin D.Kodis, GerdenisGervaldo, Miguel AndresMoore, Thomas A.Moore, Ana L.Gust, DevensBIOMIMICRYPHOTOCHEMISTRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF 10•+-TCNP•-. A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.Fil: Megiatto, Jackson D.. Arizona State University; Estados UnidosFil: Antoniuk Pablant, Antaeres. Arizona State University; Estados UnidosFil: Sherman, Benjamin D.. Arizona State University; Estados UnidosFil: Kodis, Gerdenis. Arizona State University; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados UnidosFil: Gust, Devens. Arizona State University; Estados UnidosNational Academy of Sciences2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194735Megiatto, Jackson D.; Antoniuk Pablant, Antaeres; Sherman, Benjamin D.; Kodis, Gerdenis; Gervaldo, Miguel Andres; et al.; Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 39; 3-2012; 15578-155830027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/doi/10.1073/pnas.1118348109info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1118348109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:41Zoai:ri.conicet.gov.ar:11336/194735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:42.143CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
title |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
spellingShingle |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation Megiatto, Jackson D. BIOMIMICRY PHOTOCHEMISTRY |
title_short |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
title_full |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
title_fullStr |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
title_full_unstemmed |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
title_sort |
Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation |
dc.creator.none.fl_str_mv |
Megiatto, Jackson D. Antoniuk Pablant, Antaeres Sherman, Benjamin D. Kodis, Gerdenis Gervaldo, Miguel Andres Moore, Thomas A. Moore, Ana L. Gust, Devens |
author |
Megiatto, Jackson D. |
author_facet |
Megiatto, Jackson D. Antoniuk Pablant, Antaeres Sherman, Benjamin D. Kodis, Gerdenis Gervaldo, Miguel Andres Moore, Thomas A. Moore, Ana L. Gust, Devens |
author_role |
author |
author2 |
Antoniuk Pablant, Antaeres Sherman, Benjamin D. Kodis, Gerdenis Gervaldo, Miguel Andres Moore, Thomas A. Moore, Ana L. Gust, Devens |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BIOMIMICRY PHOTOCHEMISTRY |
topic |
BIOMIMICRY PHOTOCHEMISTRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF 10•+-TCNP•-. A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production. Fil: Megiatto, Jackson D.. Arizona State University; Estados Unidos Fil: Antoniuk Pablant, Antaeres. Arizona State University; Estados Unidos Fil: Sherman, Benjamin D.. Arizona State University; Estados Unidos Fil: Kodis, Gerdenis. Arizona State University; Estados Unidos Fil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Moore, Thomas A.. Arizona State University; Estados Unidos Fil: Moore, Ana L.. Arizona State University; Estados Unidos Fil: Gust, Devens. Arizona State University; Estados Unidos |
description |
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF 10•+-TCNP•-. A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/194735 Megiatto, Jackson D.; Antoniuk Pablant, Antaeres; Sherman, Benjamin D.; Kodis, Gerdenis; Gervaldo, Miguel Andres; et al.; Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 39; 3-2012; 15578-15583 0027-8424 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/194735 |
identifier_str_mv |
Megiatto, Jackson D.; Antoniuk Pablant, Antaeres; Sherman, Benjamin D.; Kodis, Gerdenis; Gervaldo, Miguel Andres; et al.; Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 39; 3-2012; 15578-15583 0027-8424 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/doi/10.1073/pnas.1118348109 info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1118348109 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613659586723840 |
score |
13.070432 |