Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption

Autores
Brites Helú, Mariela Alicia; Bonazza, Horacio; Fernandez, Jose Luis
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A theoretical analysis of electro-adsorption reactions and of the surface diffusion of electro-adsorbed species based on scanning electrochemical microscopy (SECM) in the feedback mode, usually known as scanning electrochemical induced desorption (SECMID), is presented. Numerical simulations of the classical feedback process were carried out by including in the model a potential-dependent electro-adsorption reaction from the mediator at the substrate and allowing the adsorbed species (Aad) to diffuse over the substrate surface affecting the mediator loop. As in classical SECMID, the local variation of the mediator concentration underneath the tip causes a potential-dependent gradient of the Aad surface coverage at the substrate over the tip-affected region, which drives the Aad surface diffusion toward this area and the consequent positive feedback of mediator, reaching a steady state. The simulated steady-state dependences of the tip current (iT) on the substrate potential (ES) show the presence of a peak over the potential range affected by the electro-adsorption reaction, whose amplitude at a given tip-substrate distance is mostly influenced by the surface diffusion coefficient of Aad and the density of adsorption sites at the substrate. When this surface process is parallel to an electrode reaction of the mediator that proceeds over the same potential range, the adsorption/diffusion peak is overlapped with the typical Butler-Volmer type response of the electrode reaction, affecting the iT(ES) shape and interfering with the determination of kinetic parameters from this dependence. These phenomena were experimentally observed when using the H+/H2 mediator loop on Au and Pt, where Had is electro-adsorbed from H+, a process that in the case of Pt is parallel to the oxidation of the tip generated H2.
Fil: Brites Helú, Mariela Alicia. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonazza, Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Fernandez, Jose Luis. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Secm
Electro-Adsorption
Surface Diffusion
Hydrogen Adsorption
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18594

id CONICETDig_f62566c49dced24f7e02ddcbcf303b9c
oai_identifier_str oai:ri.conicet.gov.ar:11336/18594
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorptionBrites Helú, Mariela AliciaBonazza, HoracioFernandez, Jose LuisSecmElectro-AdsorptionSurface DiffusionHydrogen Adsorptionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A theoretical analysis of electro-adsorption reactions and of the surface diffusion of electro-adsorbed species based on scanning electrochemical microscopy (SECM) in the feedback mode, usually known as scanning electrochemical induced desorption (SECMID), is presented. Numerical simulations of the classical feedback process were carried out by including in the model a potential-dependent electro-adsorption reaction from the mediator at the substrate and allowing the adsorbed species (Aad) to diffuse over the substrate surface affecting the mediator loop. As in classical SECMID, the local variation of the mediator concentration underneath the tip causes a potential-dependent gradient of the Aad surface coverage at the substrate over the tip-affected region, which drives the Aad surface diffusion toward this area and the consequent positive feedback of mediator, reaching a steady state. The simulated steady-state dependences of the tip current (iT) on the substrate potential (ES) show the presence of a peak over the potential range affected by the electro-adsorption reaction, whose amplitude at a given tip-substrate distance is mostly influenced by the surface diffusion coefficient of Aad and the density of adsorption sites at the substrate. When this surface process is parallel to an electrode reaction of the mediator that proceeds over the same potential range, the adsorption/diffusion peak is overlapped with the typical Butler-Volmer type response of the electrode reaction, affecting the iT(ES) shape and interfering with the determination of kinetic parameters from this dependence. These phenomena were experimentally observed when using the H+/H2 mediator loop on Au and Pt, where Had is electro-adsorbed from H+, a process that in the case of Pt is parallel to the oxidation of the tip generated H2.Fil: Brites Helú, Mariela Alicia. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonazza, Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaFil: Fernandez, Jose Luis. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science Sa2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18594Brites Helú, Mariela Alicia; Bonazza, Horacio; Fernandez, Jose Luis; Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption; Elsevier Science Sa; Journal Of Electroanalytical Chemistry; 775; 8-2016; 64-711572-6657CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jelechem.2016.05.031info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1572665716302624info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:54Zoai:ri.conicet.gov.ar:11336/18594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:54.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
title Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
spellingShingle Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
Brites Helú, Mariela Alicia
Secm
Electro-Adsorption
Surface Diffusion
Hydrogen Adsorption
title_short Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
title_full Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
title_fullStr Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
title_full_unstemmed Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
title_sort Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption
dc.creator.none.fl_str_mv Brites Helú, Mariela Alicia
Bonazza, Horacio
Fernandez, Jose Luis
author Brites Helú, Mariela Alicia
author_facet Brites Helú, Mariela Alicia
Bonazza, Horacio
Fernandez, Jose Luis
author_role author
author2 Bonazza, Horacio
Fernandez, Jose Luis
author2_role author
author
dc.subject.none.fl_str_mv Secm
Electro-Adsorption
Surface Diffusion
Hydrogen Adsorption
topic Secm
Electro-Adsorption
Surface Diffusion
Hydrogen Adsorption
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A theoretical analysis of electro-adsorption reactions and of the surface diffusion of electro-adsorbed species based on scanning electrochemical microscopy (SECM) in the feedback mode, usually known as scanning electrochemical induced desorption (SECMID), is presented. Numerical simulations of the classical feedback process were carried out by including in the model a potential-dependent electro-adsorption reaction from the mediator at the substrate and allowing the adsorbed species (Aad) to diffuse over the substrate surface affecting the mediator loop. As in classical SECMID, the local variation of the mediator concentration underneath the tip causes a potential-dependent gradient of the Aad surface coverage at the substrate over the tip-affected region, which drives the Aad surface diffusion toward this area and the consequent positive feedback of mediator, reaching a steady state. The simulated steady-state dependences of the tip current (iT) on the substrate potential (ES) show the presence of a peak over the potential range affected by the electro-adsorption reaction, whose amplitude at a given tip-substrate distance is mostly influenced by the surface diffusion coefficient of Aad and the density of adsorption sites at the substrate. When this surface process is parallel to an electrode reaction of the mediator that proceeds over the same potential range, the adsorption/diffusion peak is overlapped with the typical Butler-Volmer type response of the electrode reaction, affecting the iT(ES) shape and interfering with the determination of kinetic parameters from this dependence. These phenomena were experimentally observed when using the H+/H2 mediator loop on Au and Pt, where Had is electro-adsorbed from H+, a process that in the case of Pt is parallel to the oxidation of the tip generated H2.
Fil: Brites Helú, Mariela Alicia. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonazza, Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Fernandez, Jose Luis. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A theoretical analysis of electro-adsorption reactions and of the surface diffusion of electro-adsorbed species based on scanning electrochemical microscopy (SECM) in the feedback mode, usually known as scanning electrochemical induced desorption (SECMID), is presented. Numerical simulations of the classical feedback process were carried out by including in the model a potential-dependent electro-adsorption reaction from the mediator at the substrate and allowing the adsorbed species (Aad) to diffuse over the substrate surface affecting the mediator loop. As in classical SECMID, the local variation of the mediator concentration underneath the tip causes a potential-dependent gradient of the Aad surface coverage at the substrate over the tip-affected region, which drives the Aad surface diffusion toward this area and the consequent positive feedback of mediator, reaching a steady state. The simulated steady-state dependences of the tip current (iT) on the substrate potential (ES) show the presence of a peak over the potential range affected by the electro-adsorption reaction, whose amplitude at a given tip-substrate distance is mostly influenced by the surface diffusion coefficient of Aad and the density of adsorption sites at the substrate. When this surface process is parallel to an electrode reaction of the mediator that proceeds over the same potential range, the adsorption/diffusion peak is overlapped with the typical Butler-Volmer type response of the electrode reaction, affecting the iT(ES) shape and interfering with the determination of kinetic parameters from this dependence. These phenomena were experimentally observed when using the H+/H2 mediator loop on Au and Pt, where Had is electro-adsorbed from H+, a process that in the case of Pt is parallel to the oxidation of the tip generated H2.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18594
Brites Helú, Mariela Alicia; Bonazza, Horacio; Fernandez, Jose Luis; Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption; Elsevier Science Sa; Journal Of Electroanalytical Chemistry; 775; 8-2016; 64-71
1572-6657
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18594
identifier_str_mv Brites Helú, Mariela Alicia; Bonazza, Horacio; Fernandez, Jose Luis; Electro-adsorption reactions and surface mobility of electro-adsorbed species sensed by scanning electrochemical induced desorption; Elsevier Science Sa; Journal Of Electroanalytical Chemistry; 775; 8-2016; 64-71
1572-6657
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jelechem.2016.05.031
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1572665716302624
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268696329846784
score 13.13397