Maxclique and unit disk characterizationsof strongly chordal graphs
- Autores
- de Caria, Pablo Jesús; McKee, TerryA
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs.
Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: McKee, TerryA. Wright State University. Ohio; Estados Unidos - Materia
-
CHORDAL GRAPH
STRONGLY CHORDAL GRAPH
MAXCLIQUE
CLOSED NEIGHBORHOOD
CLIQUE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32705
Ver los metadatos del registro completo
id |
CONICETDig_f61af28e82a1b3b4c3de88262104e207 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32705 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Maxclique and unit disk characterizationsof strongly chordal graphsde Caria, Pablo JesúsMcKee, TerryACHORDAL GRAPHSTRONGLY CHORDAL GRAPHMAXCLIQUECLOSED NEIGHBORHOODCLIQUEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs.Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: McKee, TerryA. Wright State University. Ohio; Estados UnidosUniversity of Zielona Gora2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32705McKee, TerryA; de Caria, Pablo Jesús; Maxclique and unit disk characterizationsof strongly chordal graphs; University of Zielona Gora; Discussiones Mathematicae - Graph Theory; 34; 7-2014; 593-6021234-3099CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7151/dmgt.1757info:eu-repo/semantics/altIdentifier/url/http://www.discuss.wmie.uz.zgora.pl/gt/index.php?doi=10.7151/dmgt.1757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:03:43Zoai:ri.conicet.gov.ar:11336/32705instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:03:43.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Maxclique and unit disk characterizationsof strongly chordal graphs |
title |
Maxclique and unit disk characterizationsof strongly chordal graphs |
spellingShingle |
Maxclique and unit disk characterizationsof strongly chordal graphs de Caria, Pablo Jesús CHORDAL GRAPH STRONGLY CHORDAL GRAPH MAXCLIQUE CLOSED NEIGHBORHOOD CLIQUE |
title_short |
Maxclique and unit disk characterizationsof strongly chordal graphs |
title_full |
Maxclique and unit disk characterizationsof strongly chordal graphs |
title_fullStr |
Maxclique and unit disk characterizationsof strongly chordal graphs |
title_full_unstemmed |
Maxclique and unit disk characterizationsof strongly chordal graphs |
title_sort |
Maxclique and unit disk characterizationsof strongly chordal graphs |
dc.creator.none.fl_str_mv |
de Caria, Pablo Jesús McKee, TerryA |
author |
de Caria, Pablo Jesús |
author_facet |
de Caria, Pablo Jesús McKee, TerryA |
author_role |
author |
author2 |
McKee, TerryA |
author2_role |
author |
dc.subject.none.fl_str_mv |
CHORDAL GRAPH STRONGLY CHORDAL GRAPH MAXCLIQUE CLOSED NEIGHBORHOOD CLIQUE |
topic |
CHORDAL GRAPH STRONGLY CHORDAL GRAPH MAXCLIQUE CLOSED NEIGHBORHOOD CLIQUE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs. Fil: de Caria, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: McKee, TerryA. Wright State University. Ohio; Estados Unidos |
description |
Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32705 McKee, TerryA; de Caria, Pablo Jesús; Maxclique and unit disk characterizationsof strongly chordal graphs; University of Zielona Gora; Discussiones Mathematicae - Graph Theory; 34; 7-2014; 593-602 1234-3099 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32705 |
identifier_str_mv |
McKee, TerryA; de Caria, Pablo Jesús; Maxclique and unit disk characterizationsof strongly chordal graphs; University of Zielona Gora; Discussiones Mathematicae - Graph Theory; 34; 7-2014; 593-602 1234-3099 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7151/dmgt.1757 info:eu-repo/semantics/altIdentifier/url/http://www.discuss.wmie.uz.zgora.pl/gt/index.php?doi=10.7151/dmgt.1757 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Zielona Gora |
publisher.none.fl_str_mv |
University of Zielona Gora |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782381347831808 |
score |
12.982451 |