Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
- Autores
- Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.
Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; Ecuador
Fil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; Ecuador
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Camacho, Oscar. Universidad San Francisco de Quito; Ecuador - Materia
-
linear algebra-based control
non-minimum phase systems
iinoya compensator
smith predictor
trajectory tracking - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274409
Ver los metadatos del registro completo
| id |
CONICETDig_f5fb18b904f387bfb62d554d0e320ec1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274409 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and EvaluationInsuasti, SebastiánGómez Guerra, GabrielScaglia, Gustavo Juan EduardoCamacho, Oscarlinear algebra-based controlnon-minimum phase systemsiinoya compensatorsmith predictortrajectory trackinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; EcuadorFil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; EcuadorFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Camacho, Oscar. Universidad San Francisco de Quito; EcuadorMultidisciplinary Digital Publishing Institute2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274409Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-342227-9717CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/13/9/2942info:eu-repo/semantics/altIdentifier/doi/10.3390/pr13092942info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:10:06Zoai:ri.conicet.gov.ar:11336/274409instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:10:07.147CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| title |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| spellingShingle |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation Insuasti, Sebastián linear algebra-based control non-minimum phase systems iinoya compensator smith predictor trajectory tracking |
| title_short |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| title_full |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| title_fullStr |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| title_full_unstemmed |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| title_sort |
Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation |
| dc.creator.none.fl_str_mv |
Insuasti, Sebastián Gómez Guerra, Gabriel Scaglia, Gustavo Juan Eduardo Camacho, Oscar |
| author |
Insuasti, Sebastián |
| author_facet |
Insuasti, Sebastián Gómez Guerra, Gabriel Scaglia, Gustavo Juan Eduardo Camacho, Oscar |
| author_role |
author |
| author2 |
Gómez Guerra, Gabriel Scaglia, Gustavo Juan Eduardo Camacho, Oscar |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
linear algebra-based control non-minimum phase systems iinoya compensator smith predictor trajectory tracking |
| topic |
linear algebra-based control non-minimum phase systems iinoya compensator smith predictor trajectory tracking |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes. Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; Ecuador Fil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; Ecuador Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: Camacho, Oscar. Universidad San Francisco de Quito; Ecuador |
| description |
This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274409 Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-34 2227-9717 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274409 |
| identifier_str_mv |
Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-34 2227-9717 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/13/9/2942 info:eu-repo/semantics/altIdentifier/doi/10.3390/pr13092942 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873676473729024 |
| score |
13.011256 |