Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation

Autores
Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.
Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; Ecuador
Fil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; Ecuador
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Camacho, Oscar. Universidad San Francisco de Quito; Ecuador
Materia
linear algebra-based control
non-minimum phase systems
iinoya compensator
smith predictor
trajectory tracking
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274409

id CONICETDig_f5fb18b904f387bfb62d554d0e320ec1
oai_identifier_str oai:ri.conicet.gov.ar:11336/274409
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and EvaluationInsuasti, SebastiánGómez Guerra, GabrielScaglia, Gustavo Juan EduardoCamacho, Oscarlinear algebra-based controlnon-minimum phase systemsiinoya compensatorsmith predictortrajectory trackinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; EcuadorFil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; EcuadorFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Camacho, Oscar. Universidad San Francisco de Quito; EcuadorMultidisciplinary Digital Publishing Institute2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274409Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-342227-9717CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/13/9/2942info:eu-repo/semantics/altIdentifier/doi/10.3390/pr13092942info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:10:06Zoai:ri.conicet.gov.ar:11336/274409instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:10:07.147CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
title Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
spellingShingle Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
Insuasti, Sebastián
linear algebra-based control
non-minimum phase systems
iinoya compensator
smith predictor
trajectory tracking
title_short Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
title_full Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
title_fullStr Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
title_full_unstemmed Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
title_sort Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation
dc.creator.none.fl_str_mv Insuasti, Sebastián
Gómez Guerra, Gabriel
Scaglia, Gustavo Juan Eduardo
Camacho, Oscar
author Insuasti, Sebastián
author_facet Insuasti, Sebastián
Gómez Guerra, Gabriel
Scaglia, Gustavo Juan Eduardo
Camacho, Oscar
author_role author
author2 Gómez Guerra, Gabriel
Scaglia, Gustavo Juan Eduardo
Camacho, Oscar
author2_role author
author
author
dc.subject.none.fl_str_mv linear algebra-based control
non-minimum phase systems
iinoya compensator
smith predictor
trajectory tracking
topic linear algebra-based control
non-minimum phase systems
iinoya compensator
smith predictor
trajectory tracking
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.
Fil: Insuasti, Sebastián. Universidad San Francisco de Quito; Ecuador
Fil: Gómez Guerra, Gabriel. Universidad San Francisco de Quito; Ecuador
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Camacho, Oscar. Universidad San Francisco de Quito; Ecuador
description This paper addresses the challenge of trajectory tracking in non-minimum-phase systems,which are known for their limitations in performance and stability within process control.The primary objective is to evaluate the feasibility of using linear-algebra-based controlstrategies to achieve precise tracking in such systems. The primary hypothesis is thatinternal model-based compensators can transform non-minimum-phase behavior intoequivalent minimum-phase dynamics, thereby enabling the application of linear algebratechniques for controller design. To validate this approach, both simulation and experimentaltests are conducted, first with a Continuous Stirred Tank Reactor (CSTR) model andthen with the TCLab educational platform. The results show that the proposed methodeffectively achieves robust trajectory tracking, even in the presence of external disturbancesand sensor noise. The primary contribution of this work is to demonstrate that internalmodel-based compensation enables the application of linear control methods to a class ofsystems that are typically considered challenging to control. This not only simplifies thedesign process but also enhances control performance, highlighting the practical relevanceand applicability of the approach for real-world non-minimum-phase systems processes.
publishDate 2025
dc.date.none.fl_str_mv 2025-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274409
Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-34
2227-9717
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274409
identifier_str_mv Insuasti, Sebastián; Gómez Guerra, Gabriel; Scaglia, Gustavo Juan Eduardo; Camacho, Oscar; Linear Algebra-Based Internal Model Control Strategies for Non-Minimum Phase Systems: Design and Evaluation; Multidisciplinary Digital Publishing Institute; Processes; 13; 9; 9-2025; 1-34
2227-9717
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/13/9/2942
info:eu-repo/semantics/altIdentifier/doi/10.3390/pr13092942
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873676473729024
score 13.011256