A normal form for stateful connectors
- Autores
- Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we consider a calculus of connectors that allows for the most general combination of synchronisation, non-determinism and buffering. According to previous results, this calculus is tightly related to a flavour of Petri nets with interfaces for composition, called Petri nets with boundaries. The calculus and the net version are equipped with equivalent bisimilarity semantics. Also the buffers (the net places) can be one-place (C/E nets) or with unlimited capacity (P/T nets). In the paper we investigate the idea of finding normal form representations for terms of this calculus, in the sense that equivalent (bisimilar) terms should have the same (isomorphic) normal form. We show that this is possible for finite state terms. The result is obtained by computing the minimal marking graph (when finite) for the net with boundaries corresponding to the given term, and reconstructing from it a canonical net and a canonical term.
Fil: Bruni, Roberto. Università degli Studi di Pisa; Italia
Fil: Melgratti, Hernan Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Montanari, Ugo. Università degli Studi di Pisa; Italia - Materia
-
Algebras of Connectors
Petri Nets with Boundaries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60175
Ver los metadatos del registro completo
id |
CONICETDig_f5e0bb90336e53e2d383ecdf9ea48438 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60175 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A normal form for stateful connectorsBruni, RobertoMelgratti, Hernan ClaudioMontanari, UgoAlgebras of ConnectorsPetri Nets with Boundarieshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we consider a calculus of connectors that allows for the most general combination of synchronisation, non-determinism and buffering. According to previous results, this calculus is tightly related to a flavour of Petri nets with interfaces for composition, called Petri nets with boundaries. The calculus and the net version are equipped with equivalent bisimilarity semantics. Also the buffers (the net places) can be one-place (C/E nets) or with unlimited capacity (P/T nets). In the paper we investigate the idea of finding normal form representations for terms of this calculus, in the sense that equivalent (bisimilar) terms should have the same (isomorphic) normal form. We show that this is possible for finite state terms. The result is obtained by computing the minimal marking graph (when finite) for the net with boundaries corresponding to the given term, and reconstructing from it a canonical net and a canonical term.Fil: Bruni, Roberto. Università degli Studi di Pisa; ItaliaFil: Melgratti, Hernan Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Montanari, Ugo. Università degli Studi di Pisa; ItaliaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60175Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; A normal form for stateful connectors; Springer; Lecture Notes in Computer Science; 9200; 8-2015; 205-2270302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-23165-5_9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-23165-5_9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:24Zoai:ri.conicet.gov.ar:11336/60175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:24.772CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A normal form for stateful connectors |
title |
A normal form for stateful connectors |
spellingShingle |
A normal form for stateful connectors Bruni, Roberto Algebras of Connectors Petri Nets with Boundaries |
title_short |
A normal form for stateful connectors |
title_full |
A normal form for stateful connectors |
title_fullStr |
A normal form for stateful connectors |
title_full_unstemmed |
A normal form for stateful connectors |
title_sort |
A normal form for stateful connectors |
dc.creator.none.fl_str_mv |
Bruni, Roberto Melgratti, Hernan Claudio Montanari, Ugo |
author |
Bruni, Roberto |
author_facet |
Bruni, Roberto Melgratti, Hernan Claudio Montanari, Ugo |
author_role |
author |
author2 |
Melgratti, Hernan Claudio Montanari, Ugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Algebras of Connectors Petri Nets with Boundaries |
topic |
Algebras of Connectors Petri Nets with Boundaries |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we consider a calculus of connectors that allows for the most general combination of synchronisation, non-determinism and buffering. According to previous results, this calculus is tightly related to a flavour of Petri nets with interfaces for composition, called Petri nets with boundaries. The calculus and the net version are equipped with equivalent bisimilarity semantics. Also the buffers (the net places) can be one-place (C/E nets) or with unlimited capacity (P/T nets). In the paper we investigate the idea of finding normal form representations for terms of this calculus, in the sense that equivalent (bisimilar) terms should have the same (isomorphic) normal form. We show that this is possible for finite state terms. The result is obtained by computing the minimal marking graph (when finite) for the net with boundaries corresponding to the given term, and reconstructing from it a canonical net and a canonical term. Fil: Bruni, Roberto. Università degli Studi di Pisa; Italia Fil: Melgratti, Hernan Claudio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Montanari, Ugo. Università degli Studi di Pisa; Italia |
description |
In this paper we consider a calculus of connectors that allows for the most general combination of synchronisation, non-determinism and buffering. According to previous results, this calculus is tightly related to a flavour of Petri nets with interfaces for composition, called Petri nets with boundaries. The calculus and the net version are equipped with equivalent bisimilarity semantics. Also the buffers (the net places) can be one-place (C/E nets) or with unlimited capacity (P/T nets). In the paper we investigate the idea of finding normal form representations for terms of this calculus, in the sense that equivalent (bisimilar) terms should have the same (isomorphic) normal form. We show that this is possible for finite state terms. The result is obtained by computing the minimal marking graph (when finite) for the net with boundaries corresponding to the given term, and reconstructing from it a canonical net and a canonical term. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60175 Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; A normal form for stateful connectors; Springer; Lecture Notes in Computer Science; 9200; 8-2015; 205-227 0302-9743 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60175 |
identifier_str_mv |
Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; A normal form for stateful connectors; Springer; Lecture Notes in Computer Science; 9200; 8-2015; 205-227 0302-9743 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-23165-5_9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-23165-5_9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082964754006016 |
score |
13.22299 |