ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana
- Autores
- Lario, Luciana Daniela; Gutierrez, Crisanto; Ramirez Parra, Elena; Spampinato, Claudia Patricia; Casati, Paula
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- ASF1 is a key histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly is of primary
relevance. Information concerning the role of ASF1 proteins in post-UV response in higher plants is currently limited. In Arabidopsis thaliana, an initial analysis of in vivo localization of ASF1A and
ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter
analysis identified ASF1A and ASF1B as potential targets of E2F transcription factors. These
observations were experimentally validated, both in vitro by electrophoretic mobility shift assays, and in vivo by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B induced DNA damage response in A. thaliana. Transcript levels of ASF1A and ASF1B were increased following a UV-B-treatment. Consistent with a potential role in ultraviolet-B (UV-B) response, RNAi silenced plants of both genes showed increased sensitivity to UV-B compared to wild type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with N-terminal acetylated histones H3 and H4, and with acetyltransferases of the HAM subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, here we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation.
Fil: Lario, Luciana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina
Fil: Gutierrez, Crisanto. Universidad Autónoma de Madrid; España
Fil: Ramirez Parra, Elena. Universidad Politecnica de Madrid; España
Fil: Spampinato, Claudia Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina
Fil: Casati, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina - Materia
-
H3/H4 chaperone
UV response - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3451
Ver los metadatos del registro completo
| id |
CONICETDig_f5e081c30b79637e826935d87403ced9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3451 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thalianaLario, Luciana DanielaGutierrez, CrisantoRamirez Parra, ElenaSpampinato, Claudia PatriciaCasati, PaulaH3/H4 chaperoneUV responsehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1ASF1 is a key histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly is of primary<br />relevance. Information concerning the role of ASF1 proteins in post-UV response in higher plants is currently limited. In Arabidopsis thaliana, an initial analysis of in vivo localization of ASF1A and<br />ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter<br />analysis identified ASF1A and ASF1B as potential targets of E2F transcription factors. These<br />observations were experimentally validated, both in vitro by electrophoretic mobility shift assays, and in vivo by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B induced DNA damage response in A. thaliana. Transcript levels of ASF1A and ASF1B were increased following a UV-B-treatment. Consistent with a potential role in ultraviolet-B (UV-B) response, RNAi silenced plants of both genes showed increased sensitivity to UV-B compared to wild type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with N-terminal acetylated histones H3 and H4, and with acetyltransferases of the HAM subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, here we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation.Fil: Lario, Luciana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); ArgentinaFil: Gutierrez, Crisanto. Universidad Autónoma de Madrid; EspañaFil: Ramirez Parra, Elena. Universidad Politecnica de Madrid; EspañaFil: Spampinato, Claudia Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); ArgentinaFil: Casati, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); ArgentinaAmerican Society Of Plant Biologist2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3451Lario, Luciana Daniela; Gutierrez, Crisanto; Ramirez Parra, Elena; Spampinato, Claudia Patricia; Casati, Paula; ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana; American Society Of Plant Biologist; Plant Physiology.; 162; 6-2013; 1164-11770032-0889enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668047/info:eu-repo/semantics/altIdentifier/url/http://www.plantphysiol.org/content/162/2/1164.longinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:54:54Zoai:ri.conicet.gov.ar:11336/3451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:54:55.106CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| title |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| spellingShingle |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana Lario, Luciana Daniela H3/H4 chaperone UV response |
| title_short |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| title_full |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| title_fullStr |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| title_full_unstemmed |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| title_sort |
ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana |
| dc.creator.none.fl_str_mv |
Lario, Luciana Daniela Gutierrez, Crisanto Ramirez Parra, Elena Spampinato, Claudia Patricia Casati, Paula |
| author |
Lario, Luciana Daniela |
| author_facet |
Lario, Luciana Daniela Gutierrez, Crisanto Ramirez Parra, Elena Spampinato, Claudia Patricia Casati, Paula |
| author_role |
author |
| author2 |
Gutierrez, Crisanto Ramirez Parra, Elena Spampinato, Claudia Patricia Casati, Paula |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
H3/H4 chaperone UV response |
| topic |
H3/H4 chaperone UV response |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
ASF1 is a key histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly is of primary<br />relevance. Information concerning the role of ASF1 proteins in post-UV response in higher plants is currently limited. In Arabidopsis thaliana, an initial analysis of in vivo localization of ASF1A and<br />ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter<br />analysis identified ASF1A and ASF1B as potential targets of E2F transcription factors. These<br />observations were experimentally validated, both in vitro by electrophoretic mobility shift assays, and in vivo by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B induced DNA damage response in A. thaliana. Transcript levels of ASF1A and ASF1B were increased following a UV-B-treatment. Consistent with a potential role in ultraviolet-B (UV-B) response, RNAi silenced plants of both genes showed increased sensitivity to UV-B compared to wild type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with N-terminal acetylated histones H3 and H4, and with acetyltransferases of the HAM subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, here we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation. Fil: Lario, Luciana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina Fil: Gutierrez, Crisanto. Universidad Autónoma de Madrid; España Fil: Ramirez Parra, Elena. Universidad Politecnica de Madrid; España Fil: Spampinato, Claudia Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina Fil: Casati, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina |
| description |
ASF1 is a key histone H3/H4 chaperone that participates in a variety of DNA and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly is of primary<br />relevance. Information concerning the role of ASF1 proteins in post-UV response in higher plants is currently limited. In Arabidopsis thaliana, an initial analysis of in vivo localization of ASF1A and<br />ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter<br />analysis identified ASF1A and ASF1B as potential targets of E2F transcription factors. These<br />observations were experimentally validated, both in vitro by electrophoretic mobility shift assays, and in vivo by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B induced DNA damage response in A. thaliana. Transcript levels of ASF1A and ASF1B were increased following a UV-B-treatment. Consistent with a potential role in ultraviolet-B (UV-B) response, RNAi silenced plants of both genes showed increased sensitivity to UV-B compared to wild type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with N-terminal acetylated histones H3 and H4, and with acetyltransferases of the HAM subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, here we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3451 Lario, Luciana Daniela; Gutierrez, Crisanto; Ramirez Parra, Elena; Spampinato, Claudia Patricia; Casati, Paula; ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana; American Society Of Plant Biologist; Plant Physiology.; 162; 6-2013; 1164-1177 0032-0889 |
| url |
http://hdl.handle.net/11336/3451 |
| identifier_str_mv |
Lario, Luciana Daniela; Gutierrez, Crisanto; Ramirez Parra, Elena; Spampinato, Claudia Patricia; Casati, Paula; ASF1 Proteins are Involved in UV-induced DNA Damage Repair and are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis thaliana; American Society Of Plant Biologist; Plant Physiology.; 162; 6-2013; 1164-1177 0032-0889 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668047/ info:eu-repo/semantics/altIdentifier/url/http://www.plantphysiol.org/content/162/2/1164.long |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Society Of Plant Biologist |
| publisher.none.fl_str_mv |
American Society Of Plant Biologist |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782249508274176 |
| score |
12.982451 |