shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment

Autores
D'andrea, María Florencia; Brodeur, Celine Marie Julie
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Living organisms have different sensitivities to toxicants. This variability can be represented by constructing a species sensitivity distribution (SSD) curve, whereby the toxicityof a substance to a group of species is described by a statistical distribution. Buildingthe SSD curve allows calculating the Hazard Concentration 5% (HC5), that is, the concentration at which 5% of the considered species are affected. The HC5 is widely used asan environmental quality criterion and a tool for ecological risk assessment (Posthuma,Suter II, & Traas, 2001).The shinyssd web application is a versatile and easy to use tool that serves to simultaneously model the SSD curve of a user-defined toxicity dataset based on four differentstatistical distribution models (log-normal, log-logistic, Weibull, Pareto). shinyssd directly calculates three estimators HC1, HC5 and HC10 associated to the four distributionmodels together with its confidence intervals, allowing the user to select the statisticaldistribution and associated HC values that best adjust the dataset.The level of confidence of the results obtained from a SSD curve will depend on the numberof species used to produce the SSD. In this sense, the first tab of the user interface is usedfor visualizing the number of species for which toxicological data are available for eachtoxicant, species group, and endpoint combination in the uploaded dataset. A minimumof species is necessary to build a SSD curve varies according to the literature (Belangeret al., 2016; Newman et al., 2000; Plant Protection Products & Residues, 2013; Wheeler,Grist, Leung, Morritt, & Crane, 2002).After selecting the toxicant and species groups, the user can filter and select subsets ofdata from the whole database by applying different quality criteria (e.g., if the studiesreported a chemical confirmation of the concentrations of the toxicant tested). The valuesentered in each column of the database serve as categories to filter the database in relationto characteristics of the bioassays. The final SSD curve is fitted to different distributionsusing the package fitdistrplus and actuar. The HC is estimated for all the distributions.By facilitating and streamlining toxicity data analysis and the creation of SSD curves, theuser interface proposed here should be useful for environmental managers and regulatorsconducting ecological risk assessments and scientific research.
Fil: D'andrea, María Florencia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Brodeur, Celine Marie Julie. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
R
ECOTOXICOLOGICAL RISK ASSESSMENT
SHINY APP
TOXICOLOGY
ENVIRONMENTAL MANAGMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129985

id CONICETDig_f445048582d006283453050283b6b1fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/129985
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk AssessmentD'andrea, María FlorenciaBrodeur, Celine Marie JulieRECOTOXICOLOGICAL RISK ASSESSMENTSHINY APPTOXICOLOGYENVIRONMENTAL MANAGMENThttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Living organisms have different sensitivities to toxicants. This variability can be represented by constructing a species sensitivity distribution (SSD) curve, whereby the toxicityof a substance to a group of species is described by a statistical distribution. Buildingthe SSD curve allows calculating the Hazard Concentration 5% (HC5), that is, the concentration at which 5% of the considered species are affected. The HC5 is widely used asan environmental quality criterion and a tool for ecological risk assessment (Posthuma,Suter II, & Traas, 2001).The shinyssd web application is a versatile and easy to use tool that serves to simultaneously model the SSD curve of a user-defined toxicity dataset based on four differentstatistical distribution models (log-normal, log-logistic, Weibull, Pareto). shinyssd directly calculates three estimators HC1, HC5 and HC10 associated to the four distributionmodels together with its confidence intervals, allowing the user to select the statisticaldistribution and associated HC values that best adjust the dataset.The level of confidence of the results obtained from a SSD curve will depend on the numberof species used to produce the SSD. In this sense, the first tab of the user interface is usedfor visualizing the number of species for which toxicological data are available for eachtoxicant, species group, and endpoint combination in the uploaded dataset. A minimumof species is necessary to build a SSD curve varies according to the literature (Belangeret al., 2016; Newman et al., 2000; Plant Protection Products & Residues, 2013; Wheeler,Grist, Leung, Morritt, & Crane, 2002).After selecting the toxicant and species groups, the user can filter and select subsets ofdata from the whole database by applying different quality criteria (e.g., if the studiesreported a chemical confirmation of the concentrations of the toxicant tested). The valuesentered in each column of the database serve as categories to filter the database in relationto characteristics of the bioassays. The final SSD curve is fitted to different distributionsusing the package fitdistrplus and actuar. The HC is estimated for all the distributions.By facilitating and streamlining toxicity data analysis and the creation of SSD curves, theuser interface proposed here should be useful for environmental managers and regulatorsconducting ecological risk assessments and scientific research.Fil: D'andrea, María Florencia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brodeur, Celine Marie Julie. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaThe journal of open science software2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129985D'andrea, María Florencia; Brodeur, Celine Marie Julie; shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment; The journal of open science software; Journal of Open Source Software; 4; 37; 5-2019; 1-32475-9066CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21105/joss.00785info:eu-repo/semantics/altIdentifier/url/https://joss.theoj.org/papers/10.21105/joss.00785info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:28Zoai:ri.conicet.gov.ar:11336/129985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:29.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
title shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
spellingShingle shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
D'andrea, María Florencia
R
ECOTOXICOLOGICAL RISK ASSESSMENT
SHINY APP
TOXICOLOGY
ENVIRONMENTAL MANAGMENT
title_short shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
title_full shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
title_fullStr shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
title_full_unstemmed shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
title_sort shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment
dc.creator.none.fl_str_mv D'andrea, María Florencia
Brodeur, Celine Marie Julie
author D'andrea, María Florencia
author_facet D'andrea, María Florencia
Brodeur, Celine Marie Julie
author_role author
author2 Brodeur, Celine Marie Julie
author2_role author
dc.subject.none.fl_str_mv R
ECOTOXICOLOGICAL RISK ASSESSMENT
SHINY APP
TOXICOLOGY
ENVIRONMENTAL MANAGMENT
topic R
ECOTOXICOLOGICAL RISK ASSESSMENT
SHINY APP
TOXICOLOGY
ENVIRONMENTAL MANAGMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Living organisms have different sensitivities to toxicants. This variability can be represented by constructing a species sensitivity distribution (SSD) curve, whereby the toxicityof a substance to a group of species is described by a statistical distribution. Buildingthe SSD curve allows calculating the Hazard Concentration 5% (HC5), that is, the concentration at which 5% of the considered species are affected. The HC5 is widely used asan environmental quality criterion and a tool for ecological risk assessment (Posthuma,Suter II, & Traas, 2001).The shinyssd web application is a versatile and easy to use tool that serves to simultaneously model the SSD curve of a user-defined toxicity dataset based on four differentstatistical distribution models (log-normal, log-logistic, Weibull, Pareto). shinyssd directly calculates three estimators HC1, HC5 and HC10 associated to the four distributionmodels together with its confidence intervals, allowing the user to select the statisticaldistribution and associated HC values that best adjust the dataset.The level of confidence of the results obtained from a SSD curve will depend on the numberof species used to produce the SSD. In this sense, the first tab of the user interface is usedfor visualizing the number of species for which toxicological data are available for eachtoxicant, species group, and endpoint combination in the uploaded dataset. A minimumof species is necessary to build a SSD curve varies according to the literature (Belangeret al., 2016; Newman et al., 2000; Plant Protection Products & Residues, 2013; Wheeler,Grist, Leung, Morritt, & Crane, 2002).After selecting the toxicant and species groups, the user can filter and select subsets ofdata from the whole database by applying different quality criteria (e.g., if the studiesreported a chemical confirmation of the concentrations of the toxicant tested). The valuesentered in each column of the database serve as categories to filter the database in relationto characteristics of the bioassays. The final SSD curve is fitted to different distributionsusing the package fitdistrplus and actuar. The HC is estimated for all the distributions.By facilitating and streamlining toxicity data analysis and the creation of SSD curves, theuser interface proposed here should be useful for environmental managers and regulatorsconducting ecological risk assessments and scientific research.
Fil: D'andrea, María Florencia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Brodeur, Celine Marie Julie. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Living organisms have different sensitivities to toxicants. This variability can be represented by constructing a species sensitivity distribution (SSD) curve, whereby the toxicityof a substance to a group of species is described by a statistical distribution. Buildingthe SSD curve allows calculating the Hazard Concentration 5% (HC5), that is, the concentration at which 5% of the considered species are affected. The HC5 is widely used asan environmental quality criterion and a tool for ecological risk assessment (Posthuma,Suter II, & Traas, 2001).The shinyssd web application is a versatile and easy to use tool that serves to simultaneously model the SSD curve of a user-defined toxicity dataset based on four differentstatistical distribution models (log-normal, log-logistic, Weibull, Pareto). shinyssd directly calculates three estimators HC1, HC5 and HC10 associated to the four distributionmodels together with its confidence intervals, allowing the user to select the statisticaldistribution and associated HC values that best adjust the dataset.The level of confidence of the results obtained from a SSD curve will depend on the numberof species used to produce the SSD. In this sense, the first tab of the user interface is usedfor visualizing the number of species for which toxicological data are available for eachtoxicant, species group, and endpoint combination in the uploaded dataset. A minimumof species is necessary to build a SSD curve varies according to the literature (Belangeret al., 2016; Newman et al., 2000; Plant Protection Products & Residues, 2013; Wheeler,Grist, Leung, Morritt, & Crane, 2002).After selecting the toxicant and species groups, the user can filter and select subsets ofdata from the whole database by applying different quality criteria (e.g., if the studiesreported a chemical confirmation of the concentrations of the toxicant tested). The valuesentered in each column of the database serve as categories to filter the database in relationto characteristics of the bioassays. The final SSD curve is fitted to different distributionsusing the package fitdistrplus and actuar. The HC is estimated for all the distributions.By facilitating and streamlining toxicity data analysis and the creation of SSD curves, theuser interface proposed here should be useful for environmental managers and regulatorsconducting ecological risk assessments and scientific research.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129985
D'andrea, María Florencia; Brodeur, Celine Marie Julie; shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment; The journal of open science software; Journal of Open Source Software; 4; 37; 5-2019; 1-3
2475-9066
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129985
identifier_str_mv D'andrea, María Florencia; Brodeur, Celine Marie Julie; shinyssd v1.0: Species Sensitivity Distributions for Ecotoxicological Risk Assessment; The journal of open science software; Journal of Open Source Software; 4; 37; 5-2019; 1-3
2475-9066
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.21105/joss.00785
info:eu-repo/semantics/altIdentifier/url/https://joss.theoj.org/papers/10.21105/joss.00785
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv The journal of open science software
publisher.none.fl_str_mv The journal of open science software
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614470146457600
score 13.070432