Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels
- Autores
- Gualdron Duarte, Jose Luis; Bates, Ronald O.; Ernst, Catherine W.; Raney, Nancy E.; Cantet, Rodolfo Juan Carlos; Steibel, Juan P.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost.
Fil: Gualdron Duarte, Jose Luis. Michigan State University; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bates, Ronald O.. Michigan State University; Estados Unidos
Fil: Ernst, Catherine W.. Michigan State University; Estados Unidos
Fil: Raney, Nancy E.. Michigan State University; Estados Unidos
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Steibel, Juan P.. Michigan State University; Estados Unidos - Materia
-
Genotype imputation
Tag SNPs
Pigs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26192
Ver los metadatos del registro completo
id |
CONICETDig_f395291f532ea688f0f4753adde90a5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26192 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panelsGualdron Duarte, Jose LuisBates, Ronald O.Ernst, Catherine W.Raney, Nancy E.Cantet, Rodolfo Juan CarlosSteibel, Juan P.Genotype imputationTag SNPsPigshttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost.Fil: Gualdron Duarte, Jose Luis. Michigan State University; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bates, Ronald O.. Michigan State University; Estados UnidosFil: Ernst, Catherine W.. Michigan State University; Estados UnidosFil: Raney, Nancy E.. Michigan State University; Estados UnidosFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steibel, Juan P.. Michigan State University; Estados UnidosBioMed Central2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26192Gualdron Duarte, Jose Luis; Bates, Ronald O.; Ernst, Catherine W.; Raney, Nancy E.; Cantet, Rodolfo Juan Carlos; et al.; Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels; BioMed Central; BMC Genetics; 14; 5-2013; 38-511471-2156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2156-14-38info:eu-repo/semantics/altIdentifier/url/https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-14-38info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:40:48Zoai:ri.conicet.gov.ar:11336/26192instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:40:48.757CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
title |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
spellingShingle |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels Gualdron Duarte, Jose Luis Genotype imputation Tag SNPs Pigs |
title_short |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
title_full |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
title_fullStr |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
title_full_unstemmed |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
title_sort |
Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels |
dc.creator.none.fl_str_mv |
Gualdron Duarte, Jose Luis Bates, Ronald O. Ernst, Catherine W. Raney, Nancy E. Cantet, Rodolfo Juan Carlos Steibel, Juan P. |
author |
Gualdron Duarte, Jose Luis |
author_facet |
Gualdron Duarte, Jose Luis Bates, Ronald O. Ernst, Catherine W. Raney, Nancy E. Cantet, Rodolfo Juan Carlos Steibel, Juan P. |
author_role |
author |
author2 |
Bates, Ronald O. Ernst, Catherine W. Raney, Nancy E. Cantet, Rodolfo Juan Carlos Steibel, Juan P. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Genotype imputation Tag SNPs Pigs |
topic |
Genotype imputation Tag SNPs Pigs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.2 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost. Fil: Gualdron Duarte, Jose Luis. Michigan State University; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bates, Ronald O.. Michigan State University; Estados Unidos Fil: Ernst, Catherine W.. Michigan State University; Estados Unidos Fil: Raney, Nancy E.. Michigan State University; Estados Unidos Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Steibel, Juan P.. Michigan State University; Estados Unidos |
description |
Background: F2 resource populations have been used extensively to map QTL segregating between pig breeds. A limitation associated with the use of these resource populations for fine mapping of QTL is the reduced number of founding individuals and recombinations of founding haplotypes occurring in the population. These limitations, however, become advantageous when attempting to impute unobserved genotypes using within family segregation information. A trade-off would be to re-type F2 populations using high density SNP panels for founding individuals and low density panels (tagSNP) in F2 individuals followed by imputation. Subsequently a combined meta-analysis of several populations would provide adequate power and resolution for QTL mapping, and could be achieved at relatively low cost. Such a strategy allows the wealth of phenotypic information that has previously been obtained on experimental resource populations to be further mined for QTL identification. In this study we used experimental and simulated high density genotypes (HD-60K) from an F2 cross to estimate imputation accuracy under several genotyping scenarios. Results: Selection of tagSNP using physical distance or linkage disequilibrium information produced similar imputation accuracies. In particular, tagSNP sets averaging 1 SNP every 2.1 Mb (1,200 SNP genome-wide) yielded imputation accuracies (IA) close to 0.97. If instead of using custom panels, the commercially available 9K chip is used in the F2, IA reaches 0.99. In order to attain such high imputation accuracy the F0 and F1 generations should be genotyped at high density. Alternatively, when only the F0 is genotyped at HD, while F1 and F2 are genotyped with a 9K panel, IA drops to 0.90. Conclusions: Combining 60K and 9K panels with imputation in F2 populations is an appealing strategy to re-genotype existing populations at a fraction of the cost. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26192 Gualdron Duarte, Jose Luis; Bates, Ronald O.; Ernst, Catherine W.; Raney, Nancy E.; Cantet, Rodolfo Juan Carlos; et al.; Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels; BioMed Central; BMC Genetics; 14; 5-2013; 38-51 1471-2156 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26192 |
identifier_str_mv |
Gualdron Duarte, Jose Luis; Bates, Ronald O.; Ernst, Catherine W.; Raney, Nancy E.; Cantet, Rodolfo Juan Carlos; et al.; Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels; BioMed Central; BMC Genetics; 14; 5-2013; 38-51 1471-2156 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2156-14-38 info:eu-repo/semantics/altIdentifier/url/https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-14-38 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843605840327606272 |
score |
12.990902 |