Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
- Autores
- Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.
Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina - Materia
-
Carbides
Irons
Abrasive Wear
Metallurgical Analysis
Xrd - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2607
Ver los metadatos del registro completo
id |
CONICETDig_f1c575d447b503046a54c6ebd8b4a1e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2607 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Wear behaviour of carbidic ductile iron with different matrices and carbide distributionBasso, Alejandro DanielLaino, SebastianDommarco, RicardoCarbidesIronsAbrasive WearMetallurgical AnalysisXrdhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaTaylor2013-01-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2607Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-401040-2004enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10402004.2012.725149info:eu-repo/semantics/altIdentifier/doi/10.1080/10402004.2012.725149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:39Zoai:ri.conicet.gov.ar:11336/2607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:39.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
title |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
spellingShingle |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution Basso, Alejandro Daniel Carbides Irons Abrasive Wear Metallurgical Analysis Xrd |
title_short |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
title_full |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
title_fullStr |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
title_full_unstemmed |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
title_sort |
Wear behaviour of carbidic ductile iron with different matrices and carbide distribution |
dc.creator.none.fl_str_mv |
Basso, Alejandro Daniel Laino, Sebastian Dommarco, Ricardo |
author |
Basso, Alejandro Daniel |
author_facet |
Basso, Alejandro Daniel Laino, Sebastian Dommarco, Ricardo |
author_role |
author |
author2 |
Laino, Sebastian Dommarco, Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Carbides Irons Abrasive Wear Metallurgical Analysis Xrd |
topic |
Carbides Irons Abrasive Wear Metallurgical Analysis Xrd |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance. Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina Fil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina Fil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina |
description |
Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2607 Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-40 1040-2004 |
url |
http://hdl.handle.net/11336/2607 |
identifier_str_mv |
Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-40 1040-2004 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10402004.2012.725149 info:eu-repo/semantics/altIdentifier/doi/10.1080/10402004.2012.725149 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor |
publisher.none.fl_str_mv |
Taylor |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614205786816512 |
score |
13.070432 |