Wear behaviour of carbidic ductile iron with different matrices and carbide distribution

Autores
Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.
Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Materia
Carbides
Irons
Abrasive Wear
Metallurgical Analysis
Xrd
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2607

id CONICETDig_f1c575d447b503046a54c6ebd8b4a1e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/2607
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Wear behaviour of carbidic ductile iron with different matrices and carbide distributionBasso, Alejandro DanielLaino, SebastianDommarco, RicardoCarbidesIronsAbrasive WearMetallurgical AnalysisXrdhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaTaylor2013-01-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2607Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-401040-2004enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10402004.2012.725149info:eu-repo/semantics/altIdentifier/doi/10.1080/10402004.2012.725149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:39Zoai:ri.conicet.gov.ar:11336/2607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:39.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
title Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
spellingShingle Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
Basso, Alejandro Daniel
Carbides
Irons
Abrasive Wear
Metallurgical Analysis
Xrd
title_short Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
title_full Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
title_fullStr Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
title_full_unstemmed Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
title_sort Wear behaviour of carbidic ductile iron with different matrices and carbide distribution
dc.creator.none.fl_str_mv Basso, Alejandro Daniel
Laino, Sebastian
Dommarco, Ricardo
author Basso, Alejandro Daniel
author_facet Basso, Alejandro Daniel
Laino, Sebastian
Dommarco, Ricardo
author_role author
author2 Laino, Sebastian
Dommarco, Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Carbides
Irons
Abrasive Wear
Metallurgical Analysis
Xrd
topic Carbides
Irons
Abrasive Wear
Metallurgical Analysis
Xrd
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.
Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Laino, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Dommarco, Ricardo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
description Just like other properties, wear resistance is entirely dependent on materials microstructure, which, in turn, is related to the chemical composition and solidification rate that controls phases type, size, amount and dispersion. Depending on the tribosystem, the abrasive wear resistance of ductile iron (DI) may be improved by heat treatment as well as by reinforcing the matrix with hard particles like carbides, typically obtained by alloying with elements such as chromium. The solidification rate mainly depends on wall thickness and mould characteristics. In ductile iron, the solidification rate affects microstructural characteristics, such as nodule size, nodule count, carbide size and distribution and matrix refinement, also including the last to freeze (LTF) amount, size and distribution. This study evaluates the influence of the wall thickness (12.5, 25, 50 and 75 mm) on the abrasion resistance and impact toughness of DI with different matrices reinforced with carbides. Carbidic structures were obtained by alloying the melt with Cr; and the different types of matrices such us pearlitic, martensitic and ausferritc (CADI) were obtained under as cast conditions or by heat treatment. The results reflect the influence of cooling rate on the microstructural characteristics and its relationship with the mechanical properties, particularly the abrasive wear resistance. It was demonstrated that, under the present experimental conditions, the highest carbide content and matrix hardness, obtained from the 12.5 mm thick part with a martensitic matrix, resulted in the highest abrasion resistance.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2607
Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-40
1040-2004
url http://hdl.handle.net/11336/2607
identifier_str_mv Basso, Alejandro Daniel; Laino, Sebastian; Dommarco, Ricardo; Wear behaviour of carbidic ductile iron with different matrices and carbide distribution; Taylor; Tribology Transactions; 56; 1; 16-1-2013; 33-40
1040-2004
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10402004.2012.725149
info:eu-repo/semantics/altIdentifier/doi/10.1080/10402004.2012.725149
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor
publisher.none.fl_str_mv Taylor
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614205786816512
score 13.070432