Atmospheric stability of arsines and the determination of their oxidative
- Autores
- Jakob, Ronit; Roth, Anja; Haas, Karsten; Krupp, Eva M.; Raab, Andrea; Smichowski, Patricia Nora; Gomez, Dario Gustavo; Feldmann, Jörg
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biovolatilisation of arsenic as their arsines in the form of AsH 3, and mono-, di and trimethylarsine has often been determined under laboratory conditions. Although environmental point sources such as landfill sites or hot springs have been characterised, only limited knowledge is available on how widespread the formation of volatile methylated arsenic compounds are in the environment. Here we studied the atmospheric stability of the different arsines and quantified their oxidation products in atmospheric particulate matter (PM10) in two locations in Argentina. The atmospheric half-life of the arsines range from 19 weeks for AsH3 to 2 d for trimethylarsine (TMAs) at 20 °C in the dark, while during simulated daytime conditions the stability is reduced for all arsines and in particular for the methylated arsines by three orders of magnitude which suggests that TMAs can only be dispersed at night. At both locations the arsenic concentration was in all samples below 1 ng As m-3, which is considered as rural background for arsenic. The oxidation products, i.e. methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO) were identified by using HPLC-ICP-MS/ES-MS in more than 90% of the 49 PM10 samples taken from 8 sampling points at the two geographically different locations. TMAO was the predominate organoarsenicals in both locations (66 and 69%, respectively) while DMA was determined to be between 13 and 19% of all organoarsenicals at the two locations. The concentration of the organoarsenicals ranged from 4 to 60 pg As as TMAO m-3, while the maximum concentration for DMA and MA were 16 and 6 pg As m-3, respectively. No difference in terms of the concentration or distribution of the organoarsenicals in the PM10 samples was identified as significant. Since the two locations were different in climate and industrial impact and sampled in different seasons, these data suggest that methylated arsenicals do occur as background chemicals in the environment. Due to the low atmospheric stability of the methylated arsines, it is suggested that biovolatilization of arsenic as methylated arsines is a widespread phenomenon. More studies however are necessary to identify the major sources and determine the flux of the volatilization process in order to determine whether or not the process has environmental significance.
Fil: Jakob, Ronit. University of Aberdeen; Reino Unido
Fil: Roth, Anja. University of Aberdeen; Reino Unido
Fil: Haas, Karsten. University of Aberdeen; Reino Unido
Fil: Krupp, Eva M.. University of Aberdeen; Reino Unido
Fil: Raab, Andrea. University of Aberdeen; Reino Unido
Fil: Smichowski, Patricia Nora. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gomez, Dario Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feldmann, Jörg. University of Aberdeen; Reino Unido - Materia
-
ARSENIC
ATMOSPHERIC AEROSOLS
BIOVOLATILIZATION
SPECIATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100120
Ver los metadatos del registro completo
id |
CONICETDig_f17c016375cad7b85a1954361a6730d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100120 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Atmospheric stability of arsines and the determination of their oxidativeJakob, RonitRoth, AnjaHaas, KarstenKrupp, Eva M.Raab, AndreaSmichowski, Patricia NoraGomez, Dario GustavoFeldmann, JörgARSENICATMOSPHERIC AEROSOLSBIOVOLATILIZATIONSPECIATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Biovolatilisation of arsenic as their arsines in the form of AsH 3, and mono-, di and trimethylarsine has often been determined under laboratory conditions. Although environmental point sources such as landfill sites or hot springs have been characterised, only limited knowledge is available on how widespread the formation of volatile methylated arsenic compounds are in the environment. Here we studied the atmospheric stability of the different arsines and quantified their oxidation products in atmospheric particulate matter (PM10) in two locations in Argentina. The atmospheric half-life of the arsines range from 19 weeks for AsH3 to 2 d for trimethylarsine (TMAs) at 20 °C in the dark, while during simulated daytime conditions the stability is reduced for all arsines and in particular for the methylated arsines by three orders of magnitude which suggests that TMAs can only be dispersed at night. At both locations the arsenic concentration was in all samples below 1 ng As m-3, which is considered as rural background for arsenic. The oxidation products, i.e. methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO) were identified by using HPLC-ICP-MS/ES-MS in more than 90% of the 49 PM10 samples taken from 8 sampling points at the two geographically different locations. TMAO was the predominate organoarsenicals in both locations (66 and 69%, respectively) while DMA was determined to be between 13 and 19% of all organoarsenicals at the two locations. The concentration of the organoarsenicals ranged from 4 to 60 pg As as TMAO m-3, while the maximum concentration for DMA and MA were 16 and 6 pg As m-3, respectively. No difference in terms of the concentration or distribution of the organoarsenicals in the PM10 samples was identified as significant. Since the two locations were different in climate and industrial impact and sampled in different seasons, these data suggest that methylated arsenicals do occur as background chemicals in the environment. Due to the low atmospheric stability of the methylated arsines, it is suggested that biovolatilization of arsenic as methylated arsines is a widespread phenomenon. More studies however are necessary to identify the major sources and determine the flux of the volatilization process in order to determine whether or not the process has environmental significance.Fil: Jakob, Ronit. University of Aberdeen; Reino UnidoFil: Roth, Anja. University of Aberdeen; Reino UnidoFil: Haas, Karsten. University of Aberdeen; Reino UnidoFil: Krupp, Eva M.. University of Aberdeen; Reino UnidoFil: Raab, Andrea. University of Aberdeen; Reino UnidoFil: Smichowski, Patricia Nora. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gomez, Dario Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feldmann, Jörg. University of Aberdeen; Reino UnidoRoyal Society of Chemistry2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100120Jakob, Ronit; Roth, Anja; Haas, Karsten; Krupp, Eva M.; Raab, Andrea; et al.; Atmospheric stability of arsines and the determination of their oxidative; Royal Society of Chemistry; Journal Of Environmental Monitoring; 12; 2; 2-2010; 409-4161464-0325CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/b915867ginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2010/EM/B915867Ginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:27Zoai:ri.conicet.gov.ar:11336/100120instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:27.352CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Atmospheric stability of arsines and the determination of their oxidative |
title |
Atmospheric stability of arsines and the determination of their oxidative |
spellingShingle |
Atmospheric stability of arsines and the determination of their oxidative Jakob, Ronit ARSENIC ATMOSPHERIC AEROSOLS BIOVOLATILIZATION SPECIATION |
title_short |
Atmospheric stability of arsines and the determination of their oxidative |
title_full |
Atmospheric stability of arsines and the determination of their oxidative |
title_fullStr |
Atmospheric stability of arsines and the determination of their oxidative |
title_full_unstemmed |
Atmospheric stability of arsines and the determination of their oxidative |
title_sort |
Atmospheric stability of arsines and the determination of their oxidative |
dc.creator.none.fl_str_mv |
Jakob, Ronit Roth, Anja Haas, Karsten Krupp, Eva M. Raab, Andrea Smichowski, Patricia Nora Gomez, Dario Gustavo Feldmann, Jörg |
author |
Jakob, Ronit |
author_facet |
Jakob, Ronit Roth, Anja Haas, Karsten Krupp, Eva M. Raab, Andrea Smichowski, Patricia Nora Gomez, Dario Gustavo Feldmann, Jörg |
author_role |
author |
author2 |
Roth, Anja Haas, Karsten Krupp, Eva M. Raab, Andrea Smichowski, Patricia Nora Gomez, Dario Gustavo Feldmann, Jörg |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ARSENIC ATMOSPHERIC AEROSOLS BIOVOLATILIZATION SPECIATION |
topic |
ARSENIC ATMOSPHERIC AEROSOLS BIOVOLATILIZATION SPECIATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Biovolatilisation of arsenic as their arsines in the form of AsH 3, and mono-, di and trimethylarsine has often been determined under laboratory conditions. Although environmental point sources such as landfill sites or hot springs have been characterised, only limited knowledge is available on how widespread the formation of volatile methylated arsenic compounds are in the environment. Here we studied the atmospheric stability of the different arsines and quantified their oxidation products in atmospheric particulate matter (PM10) in two locations in Argentina. The atmospheric half-life of the arsines range from 19 weeks for AsH3 to 2 d for trimethylarsine (TMAs) at 20 °C in the dark, while during simulated daytime conditions the stability is reduced for all arsines and in particular for the methylated arsines by three orders of magnitude which suggests that TMAs can only be dispersed at night. At both locations the arsenic concentration was in all samples below 1 ng As m-3, which is considered as rural background for arsenic. The oxidation products, i.e. methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO) were identified by using HPLC-ICP-MS/ES-MS in more than 90% of the 49 PM10 samples taken from 8 sampling points at the two geographically different locations. TMAO was the predominate organoarsenicals in both locations (66 and 69%, respectively) while DMA was determined to be between 13 and 19% of all organoarsenicals at the two locations. The concentration of the organoarsenicals ranged from 4 to 60 pg As as TMAO m-3, while the maximum concentration for DMA and MA were 16 and 6 pg As m-3, respectively. No difference in terms of the concentration or distribution of the organoarsenicals in the PM10 samples was identified as significant. Since the two locations were different in climate and industrial impact and sampled in different seasons, these data suggest that methylated arsenicals do occur as background chemicals in the environment. Due to the low atmospheric stability of the methylated arsines, it is suggested that biovolatilization of arsenic as methylated arsines is a widespread phenomenon. More studies however are necessary to identify the major sources and determine the flux of the volatilization process in order to determine whether or not the process has environmental significance. Fil: Jakob, Ronit. University of Aberdeen; Reino Unido Fil: Roth, Anja. University of Aberdeen; Reino Unido Fil: Haas, Karsten. University of Aberdeen; Reino Unido Fil: Krupp, Eva M.. University of Aberdeen; Reino Unido Fil: Raab, Andrea. University of Aberdeen; Reino Unido Fil: Smichowski, Patricia Nora. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gomez, Dario Gustavo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Feldmann, Jörg. University of Aberdeen; Reino Unido |
description |
Biovolatilisation of arsenic as their arsines in the form of AsH 3, and mono-, di and trimethylarsine has often been determined under laboratory conditions. Although environmental point sources such as landfill sites or hot springs have been characterised, only limited knowledge is available on how widespread the formation of volatile methylated arsenic compounds are in the environment. Here we studied the atmospheric stability of the different arsines and quantified their oxidation products in atmospheric particulate matter (PM10) in two locations in Argentina. The atmospheric half-life of the arsines range from 19 weeks for AsH3 to 2 d for trimethylarsine (TMAs) at 20 °C in the dark, while during simulated daytime conditions the stability is reduced for all arsines and in particular for the methylated arsines by three orders of magnitude which suggests that TMAs can only be dispersed at night. At both locations the arsenic concentration was in all samples below 1 ng As m-3, which is considered as rural background for arsenic. The oxidation products, i.e. methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO) were identified by using HPLC-ICP-MS/ES-MS in more than 90% of the 49 PM10 samples taken from 8 sampling points at the two geographically different locations. TMAO was the predominate organoarsenicals in both locations (66 and 69%, respectively) while DMA was determined to be between 13 and 19% of all organoarsenicals at the two locations. The concentration of the organoarsenicals ranged from 4 to 60 pg As as TMAO m-3, while the maximum concentration for DMA and MA were 16 and 6 pg As m-3, respectively. No difference in terms of the concentration or distribution of the organoarsenicals in the PM10 samples was identified as significant. Since the two locations were different in climate and industrial impact and sampled in different seasons, these data suggest that methylated arsenicals do occur as background chemicals in the environment. Due to the low atmospheric stability of the methylated arsines, it is suggested that biovolatilization of arsenic as methylated arsines is a widespread phenomenon. More studies however are necessary to identify the major sources and determine the flux of the volatilization process in order to determine whether or not the process has environmental significance. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100120 Jakob, Ronit; Roth, Anja; Haas, Karsten; Krupp, Eva M.; Raab, Andrea; et al.; Atmospheric stability of arsines and the determination of their oxidative; Royal Society of Chemistry; Journal Of Environmental Monitoring; 12; 2; 2-2010; 409-416 1464-0325 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100120 |
identifier_str_mv |
Jakob, Ronit; Roth, Anja; Haas, Karsten; Krupp, Eva M.; Raab, Andrea; et al.; Atmospheric stability of arsines and the determination of their oxidative; Royal Society of Chemistry; Journal Of Environmental Monitoring; 12; 2; 2-2010; 409-416 1464-0325 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/b915867g info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2010/EM/B915867G |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613398985179136 |
score |
13.070432 |