Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey
- Autores
- Solarz, Aleksandra; Thomas, Romain; Montenegro Montes, Francisco; Gromadzki, Mariusz; Donoso, Emilio; Koprowski, Maciej; Wyrzykowski, Lukasz; Diaz, Carlos Gonzalo; Sani, Eleonora; Bilicki, Maciej Andrzej
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the results of a programme to search and identify the nature of unusual sources within the All-sky Wide-field Infrared Survey Explorer (WISE) that is based on a machine-learning algorithm for anomaly detection, namely one-class support vector machines (OCSVM). Designed to detect sources deviating from a training set composed of known classes, this algorithm was used to create a model for the expected data based on WISE objects with spectroscopic identifications in the Sloan Digital Sky Survey. Subsequently, it marked as anomalous those sources whose WISE photometry was shown to be inconsistent with this model. We report the results from optical and near-infrared spectroscopy follow-up observations of a subset of 36 bright (gAB < 19.5) objects marked as "anomalous"by the OCSVM code to verify its performance. Among the observed objects, we identified three main types of sources: (i) low redshift (z ∼ 0.03 - 0.15) galaxies containing large amounts of hot dust (53%), including three Wolf-Rayet galaxies; (ii) broad-line quasi-stellar objects (QSOs) (33%) including low-ionisation broad absorption line (LoBAL) quasars and a rare QSO with strong and narrow ultraviolet iron emission; (iii) Galactic objects in dusty phases of their evolution (3%). The nature of four of these objects (11%) remains undetermined due to low signal-to-noise or featureless spectra. The current data show that the algorithm works well at detecting rare but not necessarily unknown objects among the brightest candidates. They mostly represent peculiar sub-types of otherwise well-known sources. To search for even more unusual sources, a more complete and balanced training set should be created after including these rare sub-species of otherwise abundant source classes, such as LoBALs. Such an iterative approach will ideally bring us closer to improving the strategy design for the detection of rarer sources contained within the vast data store of the AllWISE survey.
Fil: Solarz, Aleksandra. European Southern Observatory; Chile
Fil: Thomas, Romain. European Southern Observatory; Chile
Fil: Montenegro Montes, Francisco. European Southern Observatory; Chile
Fil: Gromadzki, Mariusz. University of Warsaw. Astronomical Observatory; Polonia
Fil: Donoso, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina
Fil: Koprowski, Maciej. Nicolaus Copernicus. Faculty of Physics, Astronomy and Informatics. Institute of Astronomy; Polonia
Fil: Wyrzykowski, Lukasz. University of Warsaw. Astronomical Observatory; Polonia
Fil: Diaz, Carlos Gonzalo. Gemini Observatory. Southern Operations Center; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina
Fil: Sani, Eleonora. European Southern Observatory ; Chile
Fil: Bilicki, Maciej Andrzej. Polish Academy of Sciences; Argentina - Materia
-
GALAXIES: ACTIVE
INFRARED: GALAXIES
INFRARED: STARS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140895
Ver los metadatos del registro completo
id |
CONICETDig_f120955e1f6a4e119ec22494b9496247 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140895 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky SurveySolarz, AleksandraThomas, RomainMontenegro Montes, FranciscoGromadzki, MariuszDonoso, EmilioKoprowski, MaciejWyrzykowski, LukaszDiaz, Carlos GonzaloSani, EleonoraBilicki, Maciej AndrzejGALAXIES: ACTIVEINFRARED: GALAXIESINFRARED: STARShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present the results of a programme to search and identify the nature of unusual sources within the All-sky Wide-field Infrared Survey Explorer (WISE) that is based on a machine-learning algorithm for anomaly detection, namely one-class support vector machines (OCSVM). Designed to detect sources deviating from a training set composed of known classes, this algorithm was used to create a model for the expected data based on WISE objects with spectroscopic identifications in the Sloan Digital Sky Survey. Subsequently, it marked as anomalous those sources whose WISE photometry was shown to be inconsistent with this model. We report the results from optical and near-infrared spectroscopy follow-up observations of a subset of 36 bright (gAB < 19.5) objects marked as "anomalous"by the OCSVM code to verify its performance. Among the observed objects, we identified three main types of sources: (i) low redshift (z ∼ 0.03 - 0.15) galaxies containing large amounts of hot dust (53%), including three Wolf-Rayet galaxies; (ii) broad-line quasi-stellar objects (QSOs) (33%) including low-ionisation broad absorption line (LoBAL) quasars and a rare QSO with strong and narrow ultraviolet iron emission; (iii) Galactic objects in dusty phases of their evolution (3%). The nature of four of these objects (11%) remains undetermined due to low signal-to-noise or featureless spectra. The current data show that the algorithm works well at detecting rare but not necessarily unknown objects among the brightest candidates. They mostly represent peculiar sub-types of otherwise well-known sources. To search for even more unusual sources, a more complete and balanced training set should be created after including these rare sub-species of otherwise abundant source classes, such as LoBALs. Such an iterative approach will ideally bring us closer to improving the strategy design for the detection of rarer sources contained within the vast data store of the AllWISE survey.Fil: Solarz, Aleksandra. European Southern Observatory; ChileFil: Thomas, Romain. European Southern Observatory; ChileFil: Montenegro Montes, Francisco. European Southern Observatory; ChileFil: Gromadzki, Mariusz. University of Warsaw. Astronomical Observatory; PoloniaFil: Donoso, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Koprowski, Maciej. Nicolaus Copernicus. Faculty of Physics, Astronomy and Informatics. Institute of Astronomy; PoloniaFil: Wyrzykowski, Lukasz. University of Warsaw. Astronomical Observatory; PoloniaFil: Diaz, Carlos Gonzalo. Gemini Observatory. Southern Operations Center; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Sani, Eleonora. European Southern Observatory ; ChileFil: Bilicki, Maciej Andrzej. Polish Academy of Sciences; ArgentinaEDP Sciences2020-10-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140895Solarz, Aleksandra; Thomas, Romain; Montenegro Montes, Francisco; Gromadzki, Mariusz; Donoso, Emilio; et al.; Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey; EDP Sciences; Astronomy and Astrophysics; 642; A103; 12-10-2020; 1-170004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038439info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2020/10/aa38439-20/aa38439-20.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:17Zoai:ri.conicet.gov.ar:11336/140895instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:17.956CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
title |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
spellingShingle |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey Solarz, Aleksandra GALAXIES: ACTIVE INFRARED: GALAXIES INFRARED: STARS |
title_short |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
title_full |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
title_fullStr |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
title_full_unstemmed |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
title_sort |
Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey |
dc.creator.none.fl_str_mv |
Solarz, Aleksandra Thomas, Romain Montenegro Montes, Francisco Gromadzki, Mariusz Donoso, Emilio Koprowski, Maciej Wyrzykowski, Lukasz Diaz, Carlos Gonzalo Sani, Eleonora Bilicki, Maciej Andrzej |
author |
Solarz, Aleksandra |
author_facet |
Solarz, Aleksandra Thomas, Romain Montenegro Montes, Francisco Gromadzki, Mariusz Donoso, Emilio Koprowski, Maciej Wyrzykowski, Lukasz Diaz, Carlos Gonzalo Sani, Eleonora Bilicki, Maciej Andrzej |
author_role |
author |
author2 |
Thomas, Romain Montenegro Montes, Francisco Gromadzki, Mariusz Donoso, Emilio Koprowski, Maciej Wyrzykowski, Lukasz Diaz, Carlos Gonzalo Sani, Eleonora Bilicki, Maciej Andrzej |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
GALAXIES: ACTIVE INFRARED: GALAXIES INFRARED: STARS |
topic |
GALAXIES: ACTIVE INFRARED: GALAXIES INFRARED: STARS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the results of a programme to search and identify the nature of unusual sources within the All-sky Wide-field Infrared Survey Explorer (WISE) that is based on a machine-learning algorithm for anomaly detection, namely one-class support vector machines (OCSVM). Designed to detect sources deviating from a training set composed of known classes, this algorithm was used to create a model for the expected data based on WISE objects with spectroscopic identifications in the Sloan Digital Sky Survey. Subsequently, it marked as anomalous those sources whose WISE photometry was shown to be inconsistent with this model. We report the results from optical and near-infrared spectroscopy follow-up observations of a subset of 36 bright (gAB < 19.5) objects marked as "anomalous"by the OCSVM code to verify its performance. Among the observed objects, we identified three main types of sources: (i) low redshift (z ∼ 0.03 - 0.15) galaxies containing large amounts of hot dust (53%), including three Wolf-Rayet galaxies; (ii) broad-line quasi-stellar objects (QSOs) (33%) including low-ionisation broad absorption line (LoBAL) quasars and a rare QSO with strong and narrow ultraviolet iron emission; (iii) Galactic objects in dusty phases of their evolution (3%). The nature of four of these objects (11%) remains undetermined due to low signal-to-noise or featureless spectra. The current data show that the algorithm works well at detecting rare but not necessarily unknown objects among the brightest candidates. They mostly represent peculiar sub-types of otherwise well-known sources. To search for even more unusual sources, a more complete and balanced training set should be created after including these rare sub-species of otherwise abundant source classes, such as LoBALs. Such an iterative approach will ideally bring us closer to improving the strategy design for the detection of rarer sources contained within the vast data store of the AllWISE survey. Fil: Solarz, Aleksandra. European Southern Observatory; Chile Fil: Thomas, Romain. European Southern Observatory; Chile Fil: Montenegro Montes, Francisco. European Southern Observatory; Chile Fil: Gromadzki, Mariusz. University of Warsaw. Astronomical Observatory; Polonia Fil: Donoso, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina Fil: Koprowski, Maciej. Nicolaus Copernicus. Faculty of Physics, Astronomy and Informatics. Institute of Astronomy; Polonia Fil: Wyrzykowski, Lukasz. University of Warsaw. Astronomical Observatory; Polonia Fil: Diaz, Carlos Gonzalo. Gemini Observatory. Southern Operations Center; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina Fil: Sani, Eleonora. European Southern Observatory ; Chile Fil: Bilicki, Maciej Andrzej. Polish Academy of Sciences; Argentina |
description |
We present the results of a programme to search and identify the nature of unusual sources within the All-sky Wide-field Infrared Survey Explorer (WISE) that is based on a machine-learning algorithm for anomaly detection, namely one-class support vector machines (OCSVM). Designed to detect sources deviating from a training set composed of known classes, this algorithm was used to create a model for the expected data based on WISE objects with spectroscopic identifications in the Sloan Digital Sky Survey. Subsequently, it marked as anomalous those sources whose WISE photometry was shown to be inconsistent with this model. We report the results from optical and near-infrared spectroscopy follow-up observations of a subset of 36 bright (gAB < 19.5) objects marked as "anomalous"by the OCSVM code to verify its performance. Among the observed objects, we identified three main types of sources: (i) low redshift (z ∼ 0.03 - 0.15) galaxies containing large amounts of hot dust (53%), including three Wolf-Rayet galaxies; (ii) broad-line quasi-stellar objects (QSOs) (33%) including low-ionisation broad absorption line (LoBAL) quasars and a rare QSO with strong and narrow ultraviolet iron emission; (iii) Galactic objects in dusty phases of their evolution (3%). The nature of four of these objects (11%) remains undetermined due to low signal-to-noise or featureless spectra. The current data show that the algorithm works well at detecting rare but not necessarily unknown objects among the brightest candidates. They mostly represent peculiar sub-types of otherwise well-known sources. To search for even more unusual sources, a more complete and balanced training set should be created after including these rare sub-species of otherwise abundant source classes, such as LoBALs. Such an iterative approach will ideally bring us closer to improving the strategy design for the detection of rarer sources contained within the vast data store of the AllWISE survey. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140895 Solarz, Aleksandra; Thomas, Romain; Montenegro Montes, Francisco; Gromadzki, Mariusz; Donoso, Emilio; et al.; Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey; EDP Sciences; Astronomy and Astrophysics; 642; A103; 12-10-2020; 1-17 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140895 |
identifier_str_mv |
Solarz, Aleksandra; Thomas, Romain; Montenegro Montes, Francisco; Gromadzki, Mariusz; Donoso, Emilio; et al.; Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey; EDP Sciences; Astronomy and Astrophysics; 642; A103; 12-10-2020; 1-17 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038439 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2020/10/aa38439-20/aa38439-20.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613394254004224 |
score |
13.070432 |