Symmetry results in the half-space for a semi-linear fractional Laplace equation
- Autores
- Barrios, B.; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, A.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we analyze the semi-linear fractional Laplace equation (−)s u = f (u) in RN +, u = 0 in RN \RN +, where RN + = {x = (x , xN ) ∈ RN : xN > 0} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ := supRN u verifying f (ρ) = 0, then u is necessarily one dimensional.
Fil: Barrios, B.. Universidad de La Laguna; España
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Instituto "Torcuato Di Tella"; Argentina
Fil: Garcia Melian, Jorge. Universidad de La Laguna; España
Fil: Quaas, A.. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile - Materia
-
ENERGY FORMULAS
FRACTIONAL LAPLACIAN
ONE-DIMENSIONAL ANAYSIS
SYMMETRY SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98186
Ver los metadatos del registro completo
| id |
CONICETDig_f0ebb2948fff1be3430a828f541d919d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98186 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Symmetry results in the half-space for a semi-linear fractional Laplace equationBarrios, B.del Pezzo, Leandro MartinGarcia Melian, JorgeQuaas, A.ENERGY FORMULASFRACTIONAL LAPLACIANONE-DIMENSIONAL ANAYSISSYMMETRY SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we analyze the semi-linear fractional Laplace equation (−)s u = f (u) in RN +, u = 0 in RN \RN +, where RN + = {x = (x , xN ) ∈ RN : xN > 0} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ := supRN u verifying f (ρ) = 0, then u is necessarily one dimensional.Fil: Barrios, B.. Universidad de La Laguna; EspañaFil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Instituto "Torcuato Di Tella"; ArgentinaFil: Garcia Melian, Jorge. Universidad de La Laguna; EspañaFil: Quaas, A.. Universidad Técnica Federico Santa María. Departamento de Matemática; ChileSpringer Heidelberg2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98186Barrios, B.; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, A.; Symmetry results in the half-space for a semi-linear fractional Laplace equation; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 5; 3-2018; 1385-14160373-3114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs10231-018-0729-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-018-0729-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:59:03Zoai:ri.conicet.gov.ar:11336/98186instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:59:04.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| title |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| spellingShingle |
Symmetry results in the half-space for a semi-linear fractional Laplace equation Barrios, B. ENERGY FORMULAS FRACTIONAL LAPLACIAN ONE-DIMENSIONAL ANAYSIS SYMMETRY SOLUTIONS |
| title_short |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| title_full |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| title_fullStr |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| title_full_unstemmed |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| title_sort |
Symmetry results in the half-space for a semi-linear fractional Laplace equation |
| dc.creator.none.fl_str_mv |
Barrios, B. del Pezzo, Leandro Martin Garcia Melian, Jorge Quaas, A. |
| author |
Barrios, B. |
| author_facet |
Barrios, B. del Pezzo, Leandro Martin Garcia Melian, Jorge Quaas, A. |
| author_role |
author |
| author2 |
del Pezzo, Leandro Martin Garcia Melian, Jorge Quaas, A. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ENERGY FORMULAS FRACTIONAL LAPLACIAN ONE-DIMENSIONAL ANAYSIS SYMMETRY SOLUTIONS |
| topic |
ENERGY FORMULAS FRACTIONAL LAPLACIAN ONE-DIMENSIONAL ANAYSIS SYMMETRY SOLUTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we analyze the semi-linear fractional Laplace equation (−)s u = f (u) in RN +, u = 0 in RN \RN +, where RN + = {x = (x , xN ) ∈ RN : xN > 0} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ := supRN u verifying f (ρ) = 0, then u is necessarily one dimensional. Fil: Barrios, B.. Universidad de La Laguna; España Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Instituto "Torcuato Di Tella"; Argentina Fil: Garcia Melian, Jorge. Universidad de La Laguna; España Fil: Quaas, A.. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile |
| description |
In this paper, we analyze the semi-linear fractional Laplace equation (−)s u = f (u) in RN +, u = 0 in RN \RN +, where RN + = {x = (x , xN ) ∈ RN : xN > 0} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ := supRN u verifying f (ρ) = 0, then u is necessarily one dimensional. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98186 Barrios, B.; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, A.; Symmetry results in the half-space for a semi-linear fractional Laplace equation; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 5; 3-2018; 1385-1416 0373-3114 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/98186 |
| identifier_str_mv |
Barrios, B.; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, A.; Symmetry results in the half-space for a semi-linear fractional Laplace equation; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 197; 5; 3-2018; 1385-1416 0373-3114 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs10231-018-0729-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10231-018-0729-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Heidelberg |
| publisher.none.fl_str_mv |
Springer Heidelberg |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598433653325824 |
| score |
13.24909 |