An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
- Autores
- Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; Quintal, Beatriz; Holliger, Klaus
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.
Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza
Fil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; Suiza
Fil: Jougnot, Damien. Universite de Lausanne; Suiza
Fil: Linde, Niklas. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza - Materia
-
ELECTRICAL PROPERTIES
FRACTURE AND FLOW
HYDROGEOPHYSICS
PERMEABILITY AND POROSITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53386
Ver los metadatos del registro completo
id |
CONICETDig_f034faa409644f811251e048811cfa05 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53386 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneitiesMonachesi, Leonardo BrunoRubino, Jorge GermanRosas Carbajal, Marina AndreaJougnot, DamienLinde, NiklasQuintal, BeatrizHolliger, KlausELECTRICAL PROPERTIESFRACTURE AND FLOWHYDROGEOPHYSICSPERMEABILITY AND POROSITYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; SuizaFil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; SuizaFil: Jougnot, Damien. Universite de Lausanne; SuizaFil: Linde, Niklas. Universite de Lausanne; SuizaFil: Quintal, Beatriz. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley Blackwell Publishing, Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53386Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-3420956-540XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggu482info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/201/1/329/724596info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:32Zoai:ri.conicet.gov.ar:11336/53386instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:32.313CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
title |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
spellingShingle |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities Monachesi, Leonardo Bruno ELECTRICAL PROPERTIES FRACTURE AND FLOW HYDROGEOPHYSICS PERMEABILITY AND POROSITY |
title_short |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
title_full |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
title_fullStr |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
title_full_unstemmed |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
title_sort |
An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities |
dc.creator.none.fl_str_mv |
Monachesi, Leonardo Bruno Rubino, Jorge German Rosas Carbajal, Marina Andrea Jougnot, Damien Linde, Niklas Quintal, Beatriz Holliger, Klaus |
author |
Monachesi, Leonardo Bruno |
author_facet |
Monachesi, Leonardo Bruno Rubino, Jorge German Rosas Carbajal, Marina Andrea Jougnot, Damien Linde, Niklas Quintal, Beatriz Holliger, Klaus |
author_role |
author |
author2 |
Rubino, Jorge German Rosas Carbajal, Marina Andrea Jougnot, Damien Linde, Niklas Quintal, Beatriz Holliger, Klaus |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ELECTRICAL PROPERTIES FRACTURE AND FLOW HYDROGEOPHYSICS PERMEABILITY AND POROSITY |
topic |
ELECTRICAL PROPERTIES FRACTURE AND FLOW HYDROGEOPHYSICS PERMEABILITY AND POROSITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance. Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza Fil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; Suiza Fil: Jougnot, Damien. Universite de Lausanne; Suiza Fil: Linde, Niklas. Universite de Lausanne; Suiza Fil: Quintal, Beatriz. Universite de Lausanne; Suiza Fil: Holliger, Klaus. Universite de Lausanne; Suiza |
description |
The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53386 Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-342 0956-540X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53386 |
identifier_str_mv |
Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-342 0956-540X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggu482 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/201/1/329/724596 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613146528972800 |
score |
13.070432 |