An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities

Autores
Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; Quintal, Beatriz; Holliger, Klaus
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.
Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza
Fil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; Suiza
Fil: Jougnot, Damien. Universite de Lausanne; Suiza
Fil: Linde, Niklas. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
Materia
ELECTRICAL PROPERTIES
FRACTURE AND FLOW
HYDROGEOPHYSICS
PERMEABILITY AND POROSITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53386

id CONICETDig_f034faa409644f811251e048811cfa05
oai_identifier_str oai:ri.conicet.gov.ar:11336/53386
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneitiesMonachesi, Leonardo BrunoRubino, Jorge GermanRosas Carbajal, Marina AndreaJougnot, DamienLinde, NiklasQuintal, BeatrizHolliger, KlausELECTRICAL PROPERTIESFRACTURE AND FLOWHYDROGEOPHYSICSPERMEABILITY AND POROSITYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; SuizaFil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; SuizaFil: Jougnot, Damien. Universite de Lausanne; SuizaFil: Linde, Niklas. Universite de Lausanne; SuizaFil: Quintal, Beatriz. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley Blackwell Publishing, Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53386Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-3420956-540XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggu482info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/201/1/329/724596info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:32Zoai:ri.conicet.gov.ar:11336/53386instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:32.313CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
title An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
spellingShingle An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
Monachesi, Leonardo Bruno
ELECTRICAL PROPERTIES
FRACTURE AND FLOW
HYDROGEOPHYSICS
PERMEABILITY AND POROSITY
title_short An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
title_full An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
title_fullStr An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
title_full_unstemmed An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
title_sort An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities
dc.creator.none.fl_str_mv Monachesi, Leonardo Bruno
Rubino, Jorge German
Rosas Carbajal, Marina Andrea
Jougnot, Damien
Linde, Niklas
Quintal, Beatriz
Holliger, Klaus
author Monachesi, Leonardo Bruno
author_facet Monachesi, Leonardo Bruno
Rubino, Jorge German
Rosas Carbajal, Marina Andrea
Jougnot, Damien
Linde, Niklas
Quintal, Beatriz
Holliger, Klaus
author_role author
author2 Rubino, Jorge German
Rosas Carbajal, Marina Andrea
Jougnot, Damien
Linde, Niklas
Quintal, Beatriz
Holliger, Klaus
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ELECTRICAL PROPERTIES
FRACTURE AND FLOW
HYDROGEOPHYSICS
PERMEABILITY AND POROSITY
topic ELECTRICAL PROPERTIES
FRACTURE AND FLOW
HYDROGEOPHYSICS
PERMEABILITY AND POROSITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.
Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza
Fil: Rosas Carbajal, Marina Andrea. Universite de Lausanne; Suiza
Fil: Jougnot, Damien. Universite de Lausanne; Suiza
Fil: Linde, Niklas. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
description The presence of mesoscopic heterogeneities in fluid-saturated porous rocks can produce measurable seismoelectric signals due to wave-induced fluid flow between regions of differing compressibility. The dependence of these signals on the petrophysical and structural characteristics of the probed rock mass remains largely unexplored. In this work, we derive an analytical solution to describe the seismoelectric response of a rock sample, containing a horizontal layer at its centre, that is subjected to an oscillatory compressibility test. We then adapt this general solution to compute the seismoelectric signature of a particular case related to a sample that is permeated by a horizontal fracture located at its centre. Analyses of the general and particular solutions are performed to study the impact of different petrophysical and structural parameters on the seismoelectric response. We find that the amplitude of the seismoelectric signal is directly proportional to the applied stress, to the Skempton coefficient contrast between the host rock and the layer, and to a weighted average of the effective excess charge of the two materials. Our results also demonstrate that the frequency at which the maximum electrical potential amplitude prevails does not depend on the applied stress or the Skempton coefficient contrast. In presence of strong permeability variations, this frequency is rather controlled by the permeability and thickness of the less permeable material. The results of this study thus indicate that seismoelectric measurements can potentially be used to estimate key mechanical and hydraulic rock properties of mesoscopic heterogeneities, such as compressibility, permeability and fracture compliance.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53386
Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-342
0956-540X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53386
identifier_str_mv Monachesi, Leonardo Bruno; Rubino, Jorge German; Rosas Carbajal, Marina Andrea; Jougnot, Damien; Linde, Niklas; et al.; An analytical study of seismoelectric signals produced by 1-D mesoscopic heterogeneities; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 201; 1; 1-2015; 329-342
0956-540X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggu482
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/201/1/329/724596
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613146528972800
score 13.070432