Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance

Autores
Heffner, Herman; Soldera, Marcos Maximiliano; Ränke, Fabian; Lasagni, Andrés Fabián
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine-doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line-like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser-induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro- and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye-sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.
Fil: Heffner, Herman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Soldera, Marcos Maximiliano. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ränke, Fabian. Technische Universität Dresden; Alemania
Fil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemania
Materia
direct laser interference patterning
femtosecond laser
fluorine-doped tin oxide
surface texturing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/233286

id CONICETDig_efb577b37cd7e93466182838f1d944fb
oai_identifier_str oai:ri.conicet.gov.ar:11336/233286
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic PerformanceHeffner, HermanSoldera, Marcos MaximilianoRänke, FabianLasagni, Andrés Fabiándirect laser interference patterningfemtosecond laserfluorine-doped tin oxidesurface texturinghttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine-doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line-like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser-induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro- and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye-sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.Fil: Heffner, Herman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Soldera, Marcos Maximiliano. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ränke, Fabian. Technische Universität Dresden; AlemaniaFil: Lasagni, Andrés Fabián. Technische Universität Dresden; AlemaniaWiley VCH Verlag2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233286Heffner, Herman; Soldera, Marcos Maximiliano; Ränke, Fabian; Lasagni, Andrés Fabián; Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance; Wiley VCH Verlag; Advanced Engineering Materials (print); 25; 10; 2-2023; 1-101438-16561527-2648CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adem.202201810info:eu-repo/semantics/altIdentifier/doi/10.1002/adem.202201810info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:52Zoai:ri.conicet.gov.ar:11336/233286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:52.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
title Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
spellingShingle Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
Heffner, Herman
direct laser interference patterning
femtosecond laser
fluorine-doped tin oxide
surface texturing
title_short Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
title_full Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
title_fullStr Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
title_full_unstemmed Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
title_sort Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance
dc.creator.none.fl_str_mv Heffner, Herman
Soldera, Marcos Maximiliano
Ränke, Fabian
Lasagni, Andrés Fabián
author Heffner, Herman
author_facet Heffner, Herman
Soldera, Marcos Maximiliano
Ränke, Fabian
Lasagni, Andrés Fabián
author_role author
author2 Soldera, Marcos Maximiliano
Ränke, Fabian
Lasagni, Andrés Fabián
author2_role author
author
author
dc.subject.none.fl_str_mv direct laser interference patterning
femtosecond laser
fluorine-doped tin oxide
surface texturing
topic direct laser interference patterning
femtosecond laser
fluorine-doped tin oxide
surface texturing
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine-doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line-like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser-induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro- and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye-sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.
Fil: Heffner, Herman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Soldera, Marcos Maximiliano. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ränke, Fabian. Technische Universität Dresden; Alemania
Fil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemania
description Transparent conductive oxides (TCOs) are used in solar cells not only to extract photogenerated carriers but also to allow sunlight to reach the photoactive material. Therefore, controlling the electrical and optical properties of such oxides is crucial for the optimization of the efficiency of solar cells. Herein, direct laser interference patterning (DLIP) method is used to control the surface morphology, optical and electrical properties of fluorine-doped tin oxide (FTO) by applying femtosecond laser pulses. The topography characterization reveals periodic line-like microstructures with a period of 3.0 μm and average heights between 20 and 185 nm, depending on the applied laser fluence levels. Laser-induced periodic surface structures are observed on the valleys of the texture aligned perpendicularly to the laser radiation polarization. A relative increase in the average total and diffuse optical transmittance up to 5% and 500%, respectively, is obtained in the 400–800 nm spectral range as a consequence of the generated micro- and nanostructures. Calculations of two figures of merit suggest that the texturing of FTO might enhance the efficiency of solar cells, in particular dye-sensitized (DSSCs). The findings of this study confirm that DLIP is a convenient technique for structuring electrodes for highly efficient optoelectronic devices.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/233286
Heffner, Herman; Soldera, Marcos Maximiliano; Ränke, Fabian; Lasagni, Andrés Fabián; Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance; Wiley VCH Verlag; Advanced Engineering Materials (print); 25; 10; 2-2023; 1-10
1438-1656
1527-2648
CONICET Digital
CONICET
url http://hdl.handle.net/11336/233286
identifier_str_mv Heffner, Herman; Soldera, Marcos Maximiliano; Ränke, Fabian; Lasagni, Andrés Fabián; Surface Modification of Fluorine‐Doped Tin Oxide Thin Films Using Femtosecond Direct Laser Interference Patterning: A Study of the Optoelectronic Performance; Wiley VCH Verlag; Advanced Engineering Materials (print); 25; 10; 2-2023; 1-10
1438-1656
1527-2648
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adem.202201810
info:eu-repo/semantics/altIdentifier/doi/10.1002/adem.202201810
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613005681098752
score 13.070432