Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction
- Autores
- Krause, Gustavo Javier
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many astrophysical processes involving plasma flows are produced in the context of a gravitationally stratified atmosphere in hydrostatic equilibrium, in which strong gradients can exist with gas properties that vary in small regions by several orders of magnitude. The standard Godunov-type schemes with polynomial reconstruction used to numerically solve these problems fail to preserve the hydrostatic equilibrium owing to the appearance of spurious fluxes generated by the numerical unbalance between gravitational forces and pressure gradients. Aims. The aim of this work is to present local hydrostatic reconstruction techniques that can be implemented in existing codes with Godunov-type methods to obtain well-balanced schemes that numerically satisfy the hydrostatic equilibrium for various conditions. Methods. The proposed numerical scheme is based on the Godunov method with second order MUSCL-type reconstruction, as is extensively used in astrophysical applications. The difference between the scheme and the standard formulations is only given by calculating the pressure and density Riemann states on each intercell face and by computing the gravitational source term on each cell. Results. The local hydrostatic reconstruction scheme is implemented in the FLASH code to verify the well-balanced property for hydrostatic equilibrium with constant or linearly variable temperature and constant or variable gravity. In addition, the behavior of the scheme for hydrostatic equilibrium with arbitrary temperature distributions is also analyzed together with the ability to propagate low-amplitude waves and to capture shock waves. Conclusions. The scheme is demonstrated to be robust and relatively simple to implement in existing codes. This approach produces good results in hydrostatic equilibrium preservation, satisfying the well-balanced property for the preset conditions and strongly reducing the spurious fluxes for extreme configurations.
Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina - Materia
-
NUMERICAL METHODS
MAGNETOHYDRODYNAMICS (MHD)
SUN:ATMOSPHERE
SUN: GENERAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121161
Ver los metadatos del registro completo
id |
CONICETDig_ef8e12ed04b620bf62143f830e60693c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121161 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstructionKrause, Gustavo JavierNUMERICAL METHODSMAGNETOHYDRODYNAMICS (MHD)SUN:ATMOSPHERESUN: GENERALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many astrophysical processes involving plasma flows are produced in the context of a gravitationally stratified atmosphere in hydrostatic equilibrium, in which strong gradients can exist with gas properties that vary in small regions by several orders of magnitude. The standard Godunov-type schemes with polynomial reconstruction used to numerically solve these problems fail to preserve the hydrostatic equilibrium owing to the appearance of spurious fluxes generated by the numerical unbalance between gravitational forces and pressure gradients. Aims. The aim of this work is to present local hydrostatic reconstruction techniques that can be implemented in existing codes with Godunov-type methods to obtain well-balanced schemes that numerically satisfy the hydrostatic equilibrium for various conditions. Methods. The proposed numerical scheme is based on the Godunov method with second order MUSCL-type reconstruction, as is extensively used in astrophysical applications. The difference between the scheme and the standard formulations is only given by calculating the pressure and density Riemann states on each intercell face and by computing the gravitational source term on each cell. Results. The local hydrostatic reconstruction scheme is implemented in the FLASH code to verify the well-balanced property for hydrostatic equilibrium with constant or linearly variable temperature and constant or variable gravity. In addition, the behavior of the scheme for hydrostatic equilibrium with arbitrary temperature distributions is also analyzed together with the ability to propagate low-amplitude waves and to capture shock waves. Conclusions. The scheme is demonstrated to be robust and relatively simple to implement in existing codes. This approach produces good results in hydrostatic equilibrium preservation, satisfying the well-balanced property for the preset conditions and strongly reducing the spurious fluxes for extreme configurations.Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaEDP Sciences2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121161Krause, Gustavo Javier; Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction; EDP Sciences; Astronomy and Astrophysics; 631; A68; 11-2019; 1-150004-63611432-0746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201936387info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2019/11/aa36387-19/aa36387-19.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:53Zoai:ri.conicet.gov.ar:11336/121161instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:53.984CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
title |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
spellingShingle |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction Krause, Gustavo Javier NUMERICAL METHODS MAGNETOHYDRODYNAMICS (MHD) SUN:ATMOSPHERE SUN: GENERAL |
title_short |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
title_full |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
title_fullStr |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
title_full_unstemmed |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
title_sort |
Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction |
dc.creator.none.fl_str_mv |
Krause, Gustavo Javier |
author |
Krause, Gustavo Javier |
author_facet |
Krause, Gustavo Javier |
author_role |
author |
dc.subject.none.fl_str_mv |
NUMERICAL METHODS MAGNETOHYDRODYNAMICS (MHD) SUN:ATMOSPHERE SUN: GENERAL |
topic |
NUMERICAL METHODS MAGNETOHYDRODYNAMICS (MHD) SUN:ATMOSPHERE SUN: GENERAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many astrophysical processes involving plasma flows are produced in the context of a gravitationally stratified atmosphere in hydrostatic equilibrium, in which strong gradients can exist with gas properties that vary in small regions by several orders of magnitude. The standard Godunov-type schemes with polynomial reconstruction used to numerically solve these problems fail to preserve the hydrostatic equilibrium owing to the appearance of spurious fluxes generated by the numerical unbalance between gravitational forces and pressure gradients. Aims. The aim of this work is to present local hydrostatic reconstruction techniques that can be implemented in existing codes with Godunov-type methods to obtain well-balanced schemes that numerically satisfy the hydrostatic equilibrium for various conditions. Methods. The proposed numerical scheme is based on the Godunov method with second order MUSCL-type reconstruction, as is extensively used in astrophysical applications. The difference between the scheme and the standard formulations is only given by calculating the pressure and density Riemann states on each intercell face and by computing the gravitational source term on each cell. Results. The local hydrostatic reconstruction scheme is implemented in the FLASH code to verify the well-balanced property for hydrostatic equilibrium with constant or linearly variable temperature and constant or variable gravity. In addition, the behavior of the scheme for hydrostatic equilibrium with arbitrary temperature distributions is also analyzed together with the ability to propagate low-amplitude waves and to capture shock waves. Conclusions. The scheme is demonstrated to be robust and relatively simple to implement in existing codes. This approach produces good results in hydrostatic equilibrium preservation, satisfying the well-balanced property for the preset conditions and strongly reducing the spurious fluxes for extreme configurations. Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina |
description |
Many astrophysical processes involving plasma flows are produced in the context of a gravitationally stratified atmosphere in hydrostatic equilibrium, in which strong gradients can exist with gas properties that vary in small regions by several orders of magnitude. The standard Godunov-type schemes with polynomial reconstruction used to numerically solve these problems fail to preserve the hydrostatic equilibrium owing to the appearance of spurious fluxes generated by the numerical unbalance between gravitational forces and pressure gradients. Aims. The aim of this work is to present local hydrostatic reconstruction techniques that can be implemented in existing codes with Godunov-type methods to obtain well-balanced schemes that numerically satisfy the hydrostatic equilibrium for various conditions. Methods. The proposed numerical scheme is based on the Godunov method with second order MUSCL-type reconstruction, as is extensively used in astrophysical applications. The difference between the scheme and the standard formulations is only given by calculating the pressure and density Riemann states on each intercell face and by computing the gravitational source term on each cell. Results. The local hydrostatic reconstruction scheme is implemented in the FLASH code to verify the well-balanced property for hydrostatic equilibrium with constant or linearly variable temperature and constant or variable gravity. In addition, the behavior of the scheme for hydrostatic equilibrium with arbitrary temperature distributions is also analyzed together with the ability to propagate low-amplitude waves and to capture shock waves. Conclusions. The scheme is demonstrated to be robust and relatively simple to implement in existing codes. This approach produces good results in hydrostatic equilibrium preservation, satisfying the well-balanced property for the preset conditions and strongly reducing the spurious fluxes for extreme configurations. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121161 Krause, Gustavo Javier; Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction; EDP Sciences; Astronomy and Astrophysics; 631; A68; 11-2019; 1-15 0004-6361 1432-0746 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121161 |
identifier_str_mv |
Krause, Gustavo Javier; Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres: Explicit Godunov-type schemes with MUSCL reconstruction; EDP Sciences; Astronomy and Astrophysics; 631; A68; 11-2019; 1-15 0004-6361 1432-0746 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201936387 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/full_html/2019/11/aa36387-19/aa36387-19.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613462896934912 |
score |
13.070432 |