Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
- Autores
- Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- conjunto de datos
- Estado
- Descripción
- We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; Argentina
Fil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile
Fil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; Chile
Fil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; Chile
Fil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258500
Ver los metadatos del registro completo
id |
CONICETDig_ef307ec4906d49b34afcb7e005ffed66 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258500 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiaciónTramontina Videla, Diego RamiroDeluigi, Orlando RaulRojas Nuñez, JavierValencia, FelipePasianot, Roberto CesarBaltazar, Samuel E.Gonzalez Valdes, Rafael IgnacioBringa, Eduardo MarcialPinzon, Reinhardthttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; ArgentinaFil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; ArgentinaFil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; ChileFil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; ChileFil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; ChileFil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; ChileFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; ChileFil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá2025info:ar-repo/semantics/conjuntoDeDatosv1.0info:eu-repo/semantics/dataSetapplication/octet-streamhttp://hdl.handle.net/11336/258500Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500CONICET DigitalCONICETenginfo:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/PICTO-UM-2019-0048info:eu-repo/grantAgreement/Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales/PICTO-UM-2019-0048info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:16Zoai:ri.conicet.gov.ar:11336/258500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:16.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
title |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
spellingShingle |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación Tramontina Videla, Diego Ramiro |
title_short |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
title_full |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
title_fullStr |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
title_full_unstemmed |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
title_sort |
Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación |
dc.creator.none.fl_str_mv |
Tramontina Videla, Diego Ramiro Deluigi, Orlando Raul Rojas Nuñez, Javier Valencia, Felipe Pasianot, Roberto Cesar Baltazar, Samuel E. Gonzalez Valdes, Rafael Ignacio Bringa, Eduardo Marcial Pinzon, Reinhardt |
author |
Tramontina Videla, Diego Ramiro |
author_facet |
Tramontina Videla, Diego Ramiro Deluigi, Orlando Raul Rojas Nuñez, Javier Valencia, Felipe Pasianot, Roberto Cesar Baltazar, Samuel E. Gonzalez Valdes, Rafael Ignacio Bringa, Eduardo Marcial Pinzon, Reinhardt |
author_role |
author |
author2 |
Deluigi, Orlando Raul Rojas Nuñez, Javier Valencia, Felipe Pasianot, Roberto Cesar Baltazar, Samuel E. Gonzalez Valdes, Rafael Ignacio Bringa, Eduardo Marcial Pinzon, Reinhardt |
author2_role |
author author author author author author author author |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications. Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; Argentina Fil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile Fil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina Fil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; Chile Fil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; Chile Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; Chile Fil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá |
description |
We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:ar-repo/semantics/conjuntoDeDatos v1.0 info:eu-repo/semantics/dataSet |
format |
dataSet |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258500 Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258500 |
identifier_str_mv |
Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/PICTO-UM-2019-0048 info:eu-repo/grantAgreement/Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales/PICTO-UM-2019-0048 info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048 info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/octet-stream |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614479660187648 |
score |
13.070432 |