Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación

Autores
Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt
Año de publicación
2025
Idioma
inglés
Tipo de recurso
conjunto de datos
Estado
Descripción
We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; Argentina
Fil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile
Fil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; Chile
Fil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; Chile
Fil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258500

id CONICETDig_ef307ec4906d49b34afcb7e005ffed66
oai_identifier_str oai:ri.conicet.gov.ar:11336/258500
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiaciónTramontina Videla, Diego RamiroDeluigi, Orlando RaulRojas Nuñez, JavierValencia, FelipePasianot, Roberto CesarBaltazar, Samuel E.Gonzalez Valdes, Rafael IgnacioBringa, Eduardo MarcialPinzon, Reinhardthttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; ArgentinaFil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; ArgentinaFil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; ChileFil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; ChileFil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; ChileFil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; ChileFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; ChileFil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá2025info:ar-repo/semantics/conjuntoDeDatosv1.0info:eu-repo/semantics/dataSetapplication/octet-streamhttp://hdl.handle.net/11336/258500Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500CONICET DigitalCONICETenginfo:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/PICTO-UM-2019-0048info:eu-repo/grantAgreement/Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales/PICTO-UM-2019-0048info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:16Zoai:ri.conicet.gov.ar:11336/258500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:16.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
title Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
spellingShingle Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
Tramontina Videla, Diego Ramiro
title_short Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
title_full Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
title_fullStr Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
title_full_unstemmed Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
title_sort Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación
dc.creator.none.fl_str_mv Tramontina Videla, Diego Ramiro
Deluigi, Orlando Raul
Rojas Nuñez, Javier
Valencia, Felipe
Pasianot, Roberto Cesar
Baltazar, Samuel E.
Gonzalez Valdes, Rafael Ignacio
Bringa, Eduardo Marcial
Pinzon, Reinhardt
author Tramontina Videla, Diego Ramiro
author_facet Tramontina Videla, Diego Ramiro
Deluigi, Orlando Raul
Rojas Nuñez, Javier
Valencia, Felipe
Pasianot, Roberto Cesar
Baltazar, Samuel E.
Gonzalez Valdes, Rafael Ignacio
Bringa, Eduardo Marcial
Pinzon, Reinhardt
author_role author
author2 Deluigi, Orlando Raul
Rojas Nuñez, Javier
Valencia, Felipe
Pasianot, Roberto Cesar
Baltazar, Samuel E.
Gonzalez Valdes, Rafael Ignacio
Bringa, Eduardo Marcial
Pinzon, Reinhardt
author2_role author
author
author
author
author
author
author
author
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnologica de Panamá.; Panamá. Universidad de Mendoza; Argentina
Fil: Rojas Nuñez, Javier. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile
Fil: Valencia, Felipe. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Baltazar, Samuel E.. Center For Development Of Nanoscience And Technology; Chile. Universidad de Santiago de Chile; Chile
Fil: Gonzalez Valdes, Rafael Ignacio. Center For Development Of Nanoscience And Technology; Chile. Universidad Mayor.; Chile
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor.; Chile
Fil: Pinzon, Reinhardt. Universidad Tecnologica de Panamá.; Panamá
description We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.
publishDate 2025
dc.date.none.fl_str_mv 2025
dc.type.none.fl_str_mv info:ar-repo/semantics/conjuntoDeDatos
v1.0
info:eu-repo/semantics/dataSet
format dataSet
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258500
Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258500
identifier_str_mv Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Rojas Nuñez, Javier; Valencia, Felipe; Pasianot, Roberto Cesar; Baltazar, Samuel E.; Gonzalez Valdes, Rafael Ignacio; Bringa, Eduardo Marcial; Pinzon, Reinhardt; (2025): Potencial tipo EAM (Método de Átomo Embebido) para Fe-Cu-Ni, optimizado para daño por radiación. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/258500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica/PICTO-UM-2019-0048
info:eu-repo/grantAgreement/Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales/PICTO-UM-2019-0048
info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048
info:eu-repo/grantAgreement/SISTEMA NACIONAL DE INVESTIGACIÓN (SIN) PANAMÁ/PICTO-UM-2019-0048
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/2.5/ar/
dc.format.none.fl_str_mv application/octet-stream
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614479660187648
score 13.070432