Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis
- Autores
- Bidon Chanal, Axel; Marti, Marcelo Adrian; Estrin, Dario Ariel; Luque, Javier F.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11fAla and TyrB10fPhe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10fPhe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions.
Fil: Bidon Chanal, Axel. Universidad de Barcelona; España
Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Luque, Javier F.. Universidad de Barcelona; España - Materia
-
truncated hemoglobin
molecular dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103134
Ver los metadatos del registro completo
id |
CONICETDig_ef1845b7d3cabbcf2968f63b7dfbb64c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103134 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosisBidon Chanal, AxelMarti, Marcelo AdrianEstrin, Dario ArielLuque, Javier F.truncated hemoglobinmolecular dynamicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11fAla and TyrB10fPhe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10fPhe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions.Fil: Bidon Chanal, Axel. Universidad de Barcelona; EspañaFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Luque, Javier F.. Universidad de Barcelona; EspañaAmerican Chemical Society2007-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103134Bidon Chanal, Axel; Marti, Marcelo Adrian; Estrin, Dario Ariel; Luque, Javier F. ; Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis; American Chemical Society; Journal of the American Chemical Society; 129; 21; 5-2007; 6782-67880002-7863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ja0689987info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ja0689987info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:45Zoai:ri.conicet.gov.ar:11336/103134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:46.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
title |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
spellingShingle |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis Bidon Chanal, Axel truncated hemoglobin molecular dynamics |
title_short |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
title_full |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
title_fullStr |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
title_full_unstemmed |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
title_sort |
Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis |
dc.creator.none.fl_str_mv |
Bidon Chanal, Axel Marti, Marcelo Adrian Estrin, Dario Ariel Luque, Javier F. |
author |
Bidon Chanal, Axel |
author_facet |
Bidon Chanal, Axel Marti, Marcelo Adrian Estrin, Dario Ariel Luque, Javier F. |
author_role |
author |
author2 |
Marti, Marcelo Adrian Estrin, Dario Ariel Luque, Javier F. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
truncated hemoglobin molecular dynamics |
topic |
truncated hemoglobin molecular dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11fAla and TyrB10fPhe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10fPhe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions. Fil: Bidon Chanal, Axel. Universidad de Barcelona; España Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Luque, Javier F.. Universidad de Barcelona; España |
description |
Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11fAla and TyrB10fPhe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10fPhe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103134 Bidon Chanal, Axel; Marti, Marcelo Adrian; Estrin, Dario Ariel; Luque, Javier F. ; Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis; American Chemical Society; Journal of the American Chemical Society; 129; 21; 5-2007; 6782-6788 0002-7863 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103134 |
identifier_str_mv |
Bidon Chanal, Axel; Marti, Marcelo Adrian; Estrin, Dario Ariel; Luque, Javier F. ; Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis; American Chemical Society; Journal of the American Chemical Society; 129; 21; 5-2007; 6782-6788 0002-7863 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ja0689987 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ja0689987 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980730262519808 |
score |
13.004268 |