Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We generalize a small-energy expansion for one-dimensional quantum-mechanical models proposed recently by other authors. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schrödinger equation at the origin (or any other point chosen conveniently). As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections.
Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
ANHARMONIC OSCILLATOR
CONVERGENCE
FINITE WELLS
ONE-DIMENSIONAL SCHRÖDINGER EQUATION
SMALL-ENERGY SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82153
Ver los metadatos del registro completo
id |
CONICETDig_ee4f4ff66d062c89929a31c90cc013af |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82153 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentialsAmore, PaoloFernández, Francisco MarceloANHARMONIC OSCILLATORCONVERGENCEFINITE WELLSONE-DIMENSIONAL SCHRÖDINGER EQUATIONSMALL-ENERGY SERIEShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We generalize a small-energy expansion for one-dimensional quantum-mechanical models proposed recently by other authors. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schrödinger equation at the origin (or any other point chosen conveniently). As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections.Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaSpringer2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82153Amore, Paolo; Fernández, Francisco Marcelo; Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials; Springer; Journal of Mathematical Chemistry; 53; 6; 6-2015; 1351-13620259-97911572-8897CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10910-015-0492-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-015-0492-8info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.5813info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:39Zoai:ri.conicet.gov.ar:11336/82153instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:39.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
title |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
spellingShingle |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials Amore, Paolo ANHARMONIC OSCILLATOR CONVERGENCE FINITE WELLS ONE-DIMENSIONAL SCHRÖDINGER EQUATION SMALL-ENERGY SERIES |
title_short |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
title_full |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
title_fullStr |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
title_full_unstemmed |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
title_sort |
Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANHARMONIC OSCILLATOR CONVERGENCE FINITE WELLS ONE-DIMENSIONAL SCHRÖDINGER EQUATION SMALL-ENERGY SERIES |
topic |
ANHARMONIC OSCILLATOR CONVERGENCE FINITE WELLS ONE-DIMENSIONAL SCHRÖDINGER EQUATION SMALL-ENERGY SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We generalize a small-energy expansion for one-dimensional quantum-mechanical models proposed recently by other authors. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schrödinger equation at the origin (or any other point chosen conveniently). As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections. Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
We generalize a small-energy expansion for one-dimensional quantum-mechanical models proposed recently by other authors. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schrödinger equation at the origin (or any other point chosen conveniently). As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82153 Amore, Paolo; Fernández, Francisco Marcelo; Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials; Springer; Journal of Mathematical Chemistry; 53; 6; 6-2015; 1351-1362 0259-9791 1572-8897 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82153 |
identifier_str_mv |
Amore, Paolo; Fernández, Francisco Marcelo; Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials; Springer; Journal of Mathematical Chemistry; 53; 6; 6-2015; 1351-1362 0259-9791 1572-8897 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10910-015-0492-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-015-0492-8 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.5813 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269173957263360 |
score |
13.13397 |