Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores

Autores
Elola, Maria Dolores; Rodriguez, Javier
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using Molecular Dynamics simulations, we examine structural and dynamical properties of supercritical CO2 confined within cylindrical hydrophobic nanopores of diameters 38 and 10 Å. Computer simulations were performed along the isotherm T = 315 K, spanning CO2 densities from ρ/ρc = 2.22 down to ρ/ρc = 0.22. Radial and orientational distribution functions, analysis of interfacial dynamic properties, and estimatons for local diffusion and orientational relaxation times are presented. In agreement with previous experimental data, our simulation results reveal the presence of a dense phase adsorbed within the pores. The combination of low CO2 bulk densities and narrow pores leads to ρint/ρblk ≈ 5-fold enhancement of the global density of the confined fluid. These density increments gradually become much less marked as the external phase becomes denser. Contrasting, in that latter limit, we found that the trapped fluid may become less dense than the bulk phase. Adsorption behavior of CO2 onto hydrophilic-like and rugged pore surfaces were also exmined. In these cases, we observed a global slowdown in both translational and rotational motions for the trapped CO2, the largest retardations being those associated with spatial domains of the fluid located near the silica interface.
Fil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodriguez, Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Materia
Computer Simulations
Confinement
Supercritical Liquid
Adsorption
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42590

id CONICETDig_ecdc23462d4a316b00d17658d13ecaa0
oai_identifier_str oai:ri.conicet.gov.ar:11336/42590
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Excess Sorption of Supercritical CO2 within Cylindrical Silica NanoporesElola, Maria DoloresRodriguez, JavierComputer SimulationsConfinementSupercritical LiquidAdsorptionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using Molecular Dynamics simulations, we examine structural and dynamical properties of supercritical CO2 confined within cylindrical hydrophobic nanopores of diameters 38 and 10 Å. Computer simulations were performed along the isotherm T = 315 K, spanning CO2 densities from ρ/ρc = 2.22 down to ρ/ρc = 0.22. Radial and orientational distribution functions, analysis of interfacial dynamic properties, and estimatons for local diffusion and orientational relaxation times are presented. In agreement with previous experimental data, our simulation results reveal the presence of a dense phase adsorbed within the pores. The combination of low CO2 bulk densities and narrow pores leads to ρint/ρblk ≈ 5-fold enhancement of the global density of the confined fluid. These density increments gradually become much less marked as the external phase becomes denser. Contrasting, in that latter limit, we found that the trapped fluid may become less dense than the bulk phase. Adsorption behavior of CO2 onto hydrophilic-like and rugged pore surfaces were also exmined. In these cases, we observed a global slowdown in both translational and rotational motions for the trapped CO2, the largest retardations being those associated with spatial domains of the fluid located near the silica interface.Fil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodriguez, Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaAmerican Chemical Society2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42590Elola, Maria Dolores; Rodriguez, Javier; Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores; American Chemical Society; Journal of Physical Chemistry C; 120; 2; 1-2016; 1262-12691932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b09000info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b09000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:56:08Zoai:ri.conicet.gov.ar:11336/42590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:56:08.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
title Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
spellingShingle Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
Elola, Maria Dolores
Computer Simulations
Confinement
Supercritical Liquid
Adsorption
title_short Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
title_full Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
title_fullStr Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
title_full_unstemmed Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
title_sort Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores
dc.creator.none.fl_str_mv Elola, Maria Dolores
Rodriguez, Javier
author Elola, Maria Dolores
author_facet Elola, Maria Dolores
Rodriguez, Javier
author_role author
author2 Rodriguez, Javier
author2_role author
dc.subject.none.fl_str_mv Computer Simulations
Confinement
Supercritical Liquid
Adsorption
topic Computer Simulations
Confinement
Supercritical Liquid
Adsorption
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using Molecular Dynamics simulations, we examine structural and dynamical properties of supercritical CO2 confined within cylindrical hydrophobic nanopores of diameters 38 and 10 Å. Computer simulations were performed along the isotherm T = 315 K, spanning CO2 densities from ρ/ρc = 2.22 down to ρ/ρc = 0.22. Radial and orientational distribution functions, analysis of interfacial dynamic properties, and estimatons for local diffusion and orientational relaxation times are presented. In agreement with previous experimental data, our simulation results reveal the presence of a dense phase adsorbed within the pores. The combination of low CO2 bulk densities and narrow pores leads to ρint/ρblk ≈ 5-fold enhancement of the global density of the confined fluid. These density increments gradually become much less marked as the external phase becomes denser. Contrasting, in that latter limit, we found that the trapped fluid may become less dense than the bulk phase. Adsorption behavior of CO2 onto hydrophilic-like and rugged pore surfaces were also exmined. In these cases, we observed a global slowdown in both translational and rotational motions for the trapped CO2, the largest retardations being those associated with spatial domains of the fluid located near the silica interface.
Fil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodriguez, Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
description Using Molecular Dynamics simulations, we examine structural and dynamical properties of supercritical CO2 confined within cylindrical hydrophobic nanopores of diameters 38 and 10 Å. Computer simulations were performed along the isotherm T = 315 K, spanning CO2 densities from ρ/ρc = 2.22 down to ρ/ρc = 0.22. Radial and orientational distribution functions, analysis of interfacial dynamic properties, and estimatons for local diffusion and orientational relaxation times are presented. In agreement with previous experimental data, our simulation results reveal the presence of a dense phase adsorbed within the pores. The combination of low CO2 bulk densities and narrow pores leads to ρint/ρblk ≈ 5-fold enhancement of the global density of the confined fluid. These density increments gradually become much less marked as the external phase becomes denser. Contrasting, in that latter limit, we found that the trapped fluid may become less dense than the bulk phase. Adsorption behavior of CO2 onto hydrophilic-like and rugged pore surfaces were also exmined. In these cases, we observed a global slowdown in both translational and rotational motions for the trapped CO2, the largest retardations being those associated with spatial domains of the fluid located near the silica interface.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42590
Elola, Maria Dolores; Rodriguez, Javier; Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores; American Chemical Society; Journal of Physical Chemistry C; 120; 2; 1-2016; 1262-1269
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42590
identifier_str_mv Elola, Maria Dolores; Rodriguez, Javier; Excess Sorption of Supercritical CO2 within Cylindrical Silica Nanopores; American Chemical Society; Journal of Physical Chemistry C; 120; 2; 1-2016; 1262-1269
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b09000
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b09000
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606221995638784
score 13.001348