Electrochemical-fractal model versus randles model: a discussion about diffusion process
- Autores
- Ruiz, Gabriel Alfredo; Felice, Carmelo Jose
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.
Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina - Materia
-
Electrode-Electrolyte Interface
Diffusion
Roughness Electrode - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48199
Ver los metadatos del registro completo
id |
CONICETDig_ec7c878671bd29edc21080e304ad647a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48199 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electrochemical-fractal model versus randles model: a discussion about diffusion processRuiz, Gabriel AlfredoFelice, Carmelo JoseElectrode-Electrolyte InterfaceDiffusionRoughness Electrodehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaElectrochemical Science Group2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48199Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-84961452-3981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/papers/vol10/101008484.pdfinfo:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/list15.htm#issue2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:31Zoai:ri.conicet.gov.ar:11336/48199instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:32.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
title |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
spellingShingle |
Electrochemical-fractal model versus randles model: a discussion about diffusion process Ruiz, Gabriel Alfredo Electrode-Electrolyte Interface Diffusion Roughness Electrode |
title_short |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
title_full |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
title_fullStr |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
title_full_unstemmed |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
title_sort |
Electrochemical-fractal model versus randles model: a discussion about diffusion process |
dc.creator.none.fl_str_mv |
Ruiz, Gabriel Alfredo Felice, Carmelo Jose |
author |
Ruiz, Gabriel Alfredo |
author_facet |
Ruiz, Gabriel Alfredo Felice, Carmelo Jose |
author_role |
author |
author2 |
Felice, Carmelo Jose |
author2_role |
author |
dc.subject.none.fl_str_mv |
Electrode-Electrolyte Interface Diffusion Roughness Electrode |
topic |
Electrode-Electrolyte Interface Diffusion Roughness Electrode |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane. Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina |
description |
This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48199 Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-8496 1452-3981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48199 |
identifier_str_mv |
Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-8496 1452-3981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/papers/vol10/101008484.pdf info:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/list15.htm#issue2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Electrochemical Science Group |
publisher.none.fl_str_mv |
Electrochemical Science Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613914887716864 |
score |
13.070432 |