Electrochemical-fractal model versus randles model: a discussion about diffusion process

Autores
Ruiz, Gabriel Alfredo; Felice, Carmelo Jose
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.
Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Materia
Electrode-Electrolyte Interface
Diffusion
Roughness Electrode
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48199

id CONICETDig_ec7c878671bd29edc21080e304ad647a
oai_identifier_str oai:ri.conicet.gov.ar:11336/48199
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrochemical-fractal model versus randles model: a discussion about diffusion processRuiz, Gabriel AlfredoFelice, Carmelo JoseElectrode-Electrolyte InterfaceDiffusionRoughness Electrodehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaElectrochemical Science Group2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48199Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-84961452-3981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/papers/vol10/101008484.pdfinfo:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/list15.htm#issue2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:31Zoai:ri.conicet.gov.ar:11336/48199instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:32.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrochemical-fractal model versus randles model: a discussion about diffusion process
title Electrochemical-fractal model versus randles model: a discussion about diffusion process
spellingShingle Electrochemical-fractal model versus randles model: a discussion about diffusion process
Ruiz, Gabriel Alfredo
Electrode-Electrolyte Interface
Diffusion
Roughness Electrode
title_short Electrochemical-fractal model versus randles model: a discussion about diffusion process
title_full Electrochemical-fractal model versus randles model: a discussion about diffusion process
title_fullStr Electrochemical-fractal model versus randles model: a discussion about diffusion process
title_full_unstemmed Electrochemical-fractal model versus randles model: a discussion about diffusion process
title_sort Electrochemical-fractal model versus randles model: a discussion about diffusion process
dc.creator.none.fl_str_mv Ruiz, Gabriel Alfredo
Felice, Carmelo Jose
author Ruiz, Gabriel Alfredo
author_facet Ruiz, Gabriel Alfredo
Felice, Carmelo Jose
author_role author
author2 Felice, Carmelo Jose
author2_role author
dc.subject.none.fl_str_mv Electrode-Electrolyte Interface
Diffusion
Roughness Electrode
topic Electrode-Electrolyte Interface
Diffusion
Roughness Electrode
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.
Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
description This paper presents an integral electrical model (IEM) of an electrode-electrolyte interface (EEI), which integrates geometrical and electrochemical aspects. It includes the diffusion of ionic species onto the electrode, the charge transference, the charge double layer, and the roughness degree of the electrode. The EEI impedance is electrically modelled by using a parallel connection between a double layer capacitance Cdl and a charge transference resistance Rct. The diffusion impedance is also modelled through an electrical circuit which consists of a resistance RD and a capacitance CD, both connected in parallel. RD models the energy dissipation and CD models the space distribution of the electrical charge. The parallel takes into account the fact that both phenomena occur at the same place and simultaneously. This model can be used by professors and teachers to explain and distinguish important concepts in the field of electrochemistry as the difference between the ions movement into the EEI (charge transfer) and ions movement into the diffusion layer. This difference is not clear, for example, in the Randles circuit, where diffusion impedance (Warburg element) and Cdl were connected in parallel. This implies that diffusion and the diffuse layer take place in the same space and simultaneously. The Ion movement from the medium to the external Helmholtz layer is a process previous to the charge transfer reaction and the double layer charging process. That is the reason why the EEI and diffusion impedances have been connected in series. Most importantly, both Randles and IEM models, qualitatively exhibit the same behaviour with frequency and in the complex plane.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48199
Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-8496
1452-3981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48199
identifier_str_mv Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Electrochemical-fractal model versus randles model: a discussion about diffusion process; Electrochemical Science Group; International Journal of Electrochemical Science; 10; 10; 7-2015; 8484-8496
1452-3981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/papers/vol10/101008484.pdf
info:eu-repo/semantics/altIdentifier/url/http://www.electrochemsci.org/list15.htm#issue2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Electrochemical Science Group
publisher.none.fl_str_mv Electrochemical Science Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613914887716864
score 13.070432