Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?

Autores
Heinecke, Julie L.; Khin, Chousu; Melo Pereira, Jose Clayston; Suarez, Sebastian; Iretskii, Alexei V.; Doctorovich, Fabio; Ford, Peter C.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
Fil: Heinecke, Julie L.. University Of California At Santa Barbara; Estados Unidos
Fil: Khin, Chousu. University Of California At Santa Barbara; Estados Unidos
Fil: Melo Pereira, Jose Clayston. University Of California At Santa Barbara; Estados Unidos
Fil: Suarez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Iretskii, Alexei V.. Lake Superior State University; Estados Unidos. University Of California At Santa Barbara; Estados Unidos
Fil: Doctorovich, Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Ford, Peter C.. University Of California At Santa Barbara; Estados Unidos
Materia
Nitrite
Heme
Nitroxyl
Iron
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8079

id CONICETDig_ec6ce93b1e67d0da345006d58a0364f5
oai_identifier_str oai:ri.conicet.gov.ar:11336/8079
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?Heinecke, Julie L.Khin, ChousuMelo Pereira, Jose ClaystonSuarez, SebastianIretskii, Alexei V.Doctorovich, FabioFord, Peter C.NitriteHemeNitroxylIronhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.Fil: Heinecke, Julie L.. University Of California At Santa Barbara; Estados UnidosFil: Khin, Chousu. University Of California At Santa Barbara; Estados UnidosFil: Melo Pereira, Jose Clayston. University Of California At Santa Barbara; Estados UnidosFil: Suarez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Iretskii, Alexei V.. Lake Superior State University; Estados Unidos. University Of California At Santa Barbara; Estados UnidosFil: Doctorovich, Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Ford, Peter C.. University Of California At Santa Barbara; Estados UnidosAmerican Chemical Society2013-02-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8079Heinecke, Julie L.; Khin, Chousu; Melo Pereira, Jose Clayston; Suarez, Sebastian; Iretskii, Alexei V.; et al.; Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?; American Chemical Society; Journal Of The American Chemical Society; 135; 10; 19-2-2013; 4007-40170002-7863enginfo:eu-repo/semantics/altIdentifier/doi/dx.doi.org/10.1021/ja312092xinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ja312092xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:41Zoai:ri.conicet.gov.ar:11336/8079instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:41.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
title Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
spellingShingle Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
Heinecke, Julie L.
Nitrite
Heme
Nitroxyl
Iron
title_short Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
title_full Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
title_fullStr Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
title_full_unstemmed Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
title_sort Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
dc.creator.none.fl_str_mv Heinecke, Julie L.
Khin, Chousu
Melo Pereira, Jose Clayston
Suarez, Sebastian
Iretskii, Alexei V.
Doctorovich, Fabio
Ford, Peter C.
author Heinecke, Julie L.
author_facet Heinecke, Julie L.
Khin, Chousu
Melo Pereira, Jose Clayston
Suarez, Sebastian
Iretskii, Alexei V.
Doctorovich, Fabio
Ford, Peter C.
author_role author
author2 Khin, Chousu
Melo Pereira, Jose Clayston
Suarez, Sebastian
Iretskii, Alexei V.
Doctorovich, Fabio
Ford, Peter C.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Nitrite
Heme
Nitroxyl
Iron
topic Nitrite
Heme
Nitroxyl
Iron
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
Fil: Heinecke, Julie L.. University Of California At Santa Barbara; Estados Unidos
Fil: Khin, Chousu. University Of California At Santa Barbara; Estados Unidos
Fil: Melo Pereira, Jose Clayston. University Of California At Santa Barbara; Estados Unidos
Fil: Suarez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Iretskii, Alexei V.. Lake Superior State University; Estados Unidos. University Of California At Santa Barbara; Estados Unidos
Fil: Doctorovich, Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Ford, Peter C.. University Of California At Santa Barbara; Estados Unidos
description The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8079
Heinecke, Julie L.; Khin, Chousu; Melo Pereira, Jose Clayston; Suarez, Sebastian; Iretskii, Alexei V.; et al.; Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?; American Chemical Society; Journal Of The American Chemical Society; 135; 10; 19-2-2013; 4007-4017
0002-7863
url http://hdl.handle.net/11336/8079
identifier_str_mv Heinecke, Julie L.; Khin, Chousu; Melo Pereira, Jose Clayston; Suarez, Sebastian; Iretskii, Alexei V.; et al.; Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?; American Chemical Society; Journal Of The American Chemical Society; 135; 10; 19-2-2013; 4007-4017
0002-7863
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/dx.doi.org/10.1021/ja312092x
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ja312092x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614303918850048
score 13.070432