Notions of the ergodic hierarchy for curved statistical manifolds
- Autores
- Gomez, Ignacio Sebastián
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on curved manifolds, making use of elements of the information geometry. This extension focuses on the notion of statistical independence between the microscopical variables of the system. Moreover, we establish an intimately relationship between statistical models and families of probability distributions belonging to the canonical ensemble, which for the case of the quadratic Hamiltonian systems provides a closed form for the correlations between the microvariables in terms of the temperature of the heat bath as a power law. From this, we obtain an information geometric method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the results with two examples: a pair of interacting harmonic oscillators presenting phase transitions and the 2×2 Gaussian ensembles. In both examples the scalar curvature results a global indicator of the dynamics.
Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
2d Correlated Model
Canonical Ensemble
Ergodic Hierarchy
Igeh
Information Geometry
Statistical Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63579
Ver los metadatos del registro completo
id |
CONICETDig_ec5010ca345111c4a7a5dabad0f9a4e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63579 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Notions of the ergodic hierarchy for curved statistical manifoldsGomez, Ignacio Sebastián2d Correlated ModelCanonical EnsembleErgodic HierarchyIgehInformation GeometryStatistical Modelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on curved manifolds, making use of elements of the information geometry. This extension focuses on the notion of statistical independence between the microscopical variables of the system. Moreover, we establish an intimately relationship between statistical models and families of probability distributions belonging to the canonical ensemble, which for the case of the quadratic Hamiltonian systems provides a closed form for the correlations between the microvariables in terms of the temperature of the heat bath as a power law. From this, we obtain an information geometric method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the results with two examples: a pair of interacting harmonic oscillators presenting phase transitions and the 2×2 Gaussian ensembles. In both examples the scalar curvature results a global indicator of the dynamics.Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63579Gomez, Ignacio Sebastián; Notions of the ergodic hierarchy for curved statistical manifolds; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 484; 10-2017; 117-1310378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117305149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:16Zoai:ri.conicet.gov.ar:11336/63579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:16.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Notions of the ergodic hierarchy for curved statistical manifolds |
title |
Notions of the ergodic hierarchy for curved statistical manifolds |
spellingShingle |
Notions of the ergodic hierarchy for curved statistical manifolds Gomez, Ignacio Sebastián 2d Correlated Model Canonical Ensemble Ergodic Hierarchy Igeh Information Geometry Statistical Models |
title_short |
Notions of the ergodic hierarchy for curved statistical manifolds |
title_full |
Notions of the ergodic hierarchy for curved statistical manifolds |
title_fullStr |
Notions of the ergodic hierarchy for curved statistical manifolds |
title_full_unstemmed |
Notions of the ergodic hierarchy for curved statistical manifolds |
title_sort |
Notions of the ergodic hierarchy for curved statistical manifolds |
dc.creator.none.fl_str_mv |
Gomez, Ignacio Sebastián |
author |
Gomez, Ignacio Sebastián |
author_facet |
Gomez, Ignacio Sebastián |
author_role |
author |
dc.subject.none.fl_str_mv |
2d Correlated Model Canonical Ensemble Ergodic Hierarchy Igeh Information Geometry Statistical Models |
topic |
2d Correlated Model Canonical Ensemble Ergodic Hierarchy Igeh Information Geometry Statistical Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on curved manifolds, making use of elements of the information geometry. This extension focuses on the notion of statistical independence between the microscopical variables of the system. Moreover, we establish an intimately relationship between statistical models and families of probability distributions belonging to the canonical ensemble, which for the case of the quadratic Hamiltonian systems provides a closed form for the correlations between the microvariables in terms of the temperature of the heat bath as a power law. From this, we obtain an information geometric method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the results with two examples: a pair of interacting harmonic oscillators presenting phase transitions and the 2×2 Gaussian ensembles. In both examples the scalar curvature results a global indicator of the dynamics. Fil: Gomez, Ignacio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on curved manifolds, making use of elements of the information geometry. This extension focuses on the notion of statistical independence between the microscopical variables of the system. Moreover, we establish an intimately relationship between statistical models and families of probability distributions belonging to the canonical ensemble, which for the case of the quadratic Hamiltonian systems provides a closed form for the correlations between the microvariables in terms of the temperature of the heat bath as a power law. From this, we obtain an information geometric method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the results with two examples: a pair of interacting harmonic oscillators presenting phase transitions and the 2×2 Gaussian ensembles. In both examples the scalar curvature results a global indicator of the dynamics. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63579 Gomez, Ignacio Sebastián; Notions of the ergodic hierarchy for curved statistical manifolds; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 484; 10-2017; 117-131 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63579 |
identifier_str_mv |
Gomez, Ignacio Sebastián; Notions of the ergodic hierarchy for curved statistical manifolds; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 484; 10-2017; 117-131 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.012 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117305149 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268914060361728 |
score |
13.13397 |