Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels

Autores
Rodriguez, Javier; Elola, Maria Dolores
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The iboprufen delivery process from cylindrical silica pores of diameter 3~nm, with polyamine chains anchored at the pore outlets,
was investigated by means of massive molecular dynamics simulations. Effects from pH were introduced by considering polyamine chains with different degree of protonation. High, low and intermediate pH environments were investigated. The increment of the acidity of the environment leads to a significant decrease of the pore aperture,  yielding an effective diameter, for the lowest pH case, that is 3.5~times smaller than the one associated to the highest pH one. Using a biased sampling procedure, Gibbs free energy profiles for the ibuprofen delivery process were obtained. The joint analysis of the corresponding profiles, time evolution of the ibuprofen position within the channel, orientation of the molecule and instantaneous effective diameter of the gate, suggests a 3-steps mechanism for ibuprofen delivery. A complementary analysis of the translational mobility of ibuprofen along the axial direction of the channel revealed a sub-diffusive dynamics in the low and intermediate pH cases.
Deviations from Brownian diffusive dynamics are discussed and compared with direct experimental results.

Fil: Rodriguez, Javier. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo de Investigación en Educacion Ciencia y Tecnologia; Argentina
Fil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica; Argentina
Materia
IBUPROFEN
DRUG RELEASE
NANOCHANNELS
COMPUTER SIMULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41753

id CONICETDig_eb2f22334145a3bec6312fed13517ddc
oai_identifier_str oai:ri.conicet.gov.ar:11336/41753
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannelsRodriguez, JavierElola, Maria DoloresIBUPROFENDRUG RELEASENANOCHANNELSCOMPUTER SIMULATIONShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The iboprufen delivery process from cylindrical silica pores of diameter 3~nm, with polyamine chains anchored at the pore outlets,<br />was investigated by means of massive molecular dynamics simulations. Effects from pH were introduced by considering polyamine chains with different degree of protonation. High, low and intermediate pH environments were investigated. The increment of the acidity of the environment leads to a significant decrease of the pore aperture,  yielding an effective diameter, for the lowest pH case, that is 3.5~times smaller than the one associated to the highest pH one. Using a biased sampling procedure, Gibbs free energy profiles for the ibuprofen delivery process were obtained. The joint analysis of the corresponding profiles, time evolution of the ibuprofen position within the channel, orientation of the molecule and instantaneous effective diameter of the gate, suggests a 3-steps mechanism for ibuprofen delivery. A complementary analysis of the translational mobility of ibuprofen along the axial direction of the channel revealed a sub-diffusive dynamics in the low and intermediate pH cases.<br />Deviations from Brownian diffusive dynamics are discussed and compared with direct experimental results. <br />Fil: Rodriguez, Javier. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo de Investigación en Educacion Ciencia y Tecnologia; ArgentinaFil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica; ArgentinaAmerican Chemical Society2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41753Rodriguez, Javier; Elola, Maria Dolores; Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels; American Chemical Society; Journal of Physical Chemistry B; 119; 8-2015; 8868-88781089-5647CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jp505585ginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp505585ginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:02:53Zoai:ri.conicet.gov.ar:11336/41753instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:02:53.986CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
title Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
spellingShingle Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
Rodriguez, Javier
IBUPROFEN
DRUG RELEASE
NANOCHANNELS
COMPUTER SIMULATIONS
title_short Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
title_full Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
title_fullStr Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
title_full_unstemmed Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
title_sort Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels
dc.creator.none.fl_str_mv Rodriguez, Javier
Elola, Maria Dolores
author Rodriguez, Javier
author_facet Rodriguez, Javier
Elola, Maria Dolores
author_role author
author2 Elola, Maria Dolores
author2_role author
dc.subject.none.fl_str_mv IBUPROFEN
DRUG RELEASE
NANOCHANNELS
COMPUTER SIMULATIONS
topic IBUPROFEN
DRUG RELEASE
NANOCHANNELS
COMPUTER SIMULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The iboprufen delivery process from cylindrical silica pores of diameter 3~nm, with polyamine chains anchored at the pore outlets,<br />was investigated by means of massive molecular dynamics simulations. Effects from pH were introduced by considering polyamine chains with different degree of protonation. High, low and intermediate pH environments were investigated. The increment of the acidity of the environment leads to a significant decrease of the pore aperture,  yielding an effective diameter, for the lowest pH case, that is 3.5~times smaller than the one associated to the highest pH one. Using a biased sampling procedure, Gibbs free energy profiles for the ibuprofen delivery process were obtained. The joint analysis of the corresponding profiles, time evolution of the ibuprofen position within the channel, orientation of the molecule and instantaneous effective diameter of the gate, suggests a 3-steps mechanism for ibuprofen delivery. A complementary analysis of the translational mobility of ibuprofen along the axial direction of the channel revealed a sub-diffusive dynamics in the low and intermediate pH cases.<br />Deviations from Brownian diffusive dynamics are discussed and compared with direct experimental results. <br />
Fil: Rodriguez, Javier. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo de Investigación en Educacion Ciencia y Tecnologia; Argentina
Fil: Elola, Maria Dolores. Comisión Nacional de Energía Atómica; Argentina
description The iboprufen delivery process from cylindrical silica pores of diameter 3~nm, with polyamine chains anchored at the pore outlets,<br />was investigated by means of massive molecular dynamics simulations. Effects from pH were introduced by considering polyamine chains with different degree of protonation. High, low and intermediate pH environments were investigated. The increment of the acidity of the environment leads to a significant decrease of the pore aperture,  yielding an effective diameter, for the lowest pH case, that is 3.5~times smaller than the one associated to the highest pH one. Using a biased sampling procedure, Gibbs free energy profiles for the ibuprofen delivery process were obtained. The joint analysis of the corresponding profiles, time evolution of the ibuprofen position within the channel, orientation of the molecule and instantaneous effective diameter of the gate, suggests a 3-steps mechanism for ibuprofen delivery. A complementary analysis of the translational mobility of ibuprofen along the axial direction of the channel revealed a sub-diffusive dynamics in the low and intermediate pH cases.<br />Deviations from Brownian diffusive dynamics are discussed and compared with direct experimental results. <br />
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41753
Rodriguez, Javier; Elola, Maria Dolores; Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels; American Chemical Society; Journal of Physical Chemistry B; 119; 8-2015; 8868-8878
1089-5647
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41753
identifier_str_mv Rodriguez, Javier; Elola, Maria Dolores; Molecular dynamics simulations of Ibuprofen release from pH-gated silica nanochannels; American Chemical Society; Journal of Physical Chemistry B; 119; 8-2015; 8868-8878
1089-5647
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jp505585g
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp505585g
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083170696429568
score 13.22299