Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia col...

Autores
Jiang, Peng; Ventura, Alejandra; Ninfa, Alexander J.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRIINRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.
Fil: Jiang, Peng. University of Michigan; Estados Unidos
Fil: Ventura, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Ninfa, Alexander J.. University of Michigan; Estados Unidos
Materia
Signal Transduction
E Coli
Sensitivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20230

id CONICETDig_ead1788e687a5b037a3b9b0fc24234b3
oai_identifier_str oai:ri.conicet.gov.ar:11336/20230
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coliJiang, PengVentura, AlejandraNinfa, Alexander J.Signal TransductionE ColiSensitivityhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRIINRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.Fil: Jiang, Peng. University of Michigan; Estados UnidosFil: Ventura, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Ninfa, Alexander J.. University of Michigan; Estados UnidosAmerican Chemical Society2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20230Jiang, Peng; Ventura, Alejandra; Ninfa, Alexander J.; Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli; American Chemical Society; Biochemistry; 51; 45; 10-2012; 9045-90570006-2960CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/bi300575jinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/bi300575jinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:25:06Zoai:ri.conicet.gov.ar:11336/20230instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:25:06.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
title Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
spellingShingle Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
Jiang, Peng
Signal Transduction
E Coli
Sensitivity
title_short Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
title_full Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
title_fullStr Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
title_full_unstemmed Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
title_sort Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli
dc.creator.none.fl_str_mv Jiang, Peng
Ventura, Alejandra
Ninfa, Alexander J.
author Jiang, Peng
author_facet Jiang, Peng
Ventura, Alejandra
Ninfa, Alexander J.
author_role author
author2 Ventura, Alejandra
Ninfa, Alexander J.
author2_role author
author
dc.subject.none.fl_str_mv Signal Transduction
E Coli
Sensitivity
topic Signal Transduction
E Coli
Sensitivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRIINRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.
Fil: Jiang, Peng. University of Michigan; Estados Unidos
Fil: Ventura, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Ninfa, Alexander J.. University of Michigan; Estados Unidos
description A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRIINRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20230
Jiang, Peng; Ventura, Alejandra; Ninfa, Alexander J.; Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli; American Chemical Society; Biochemistry; 51; 45; 10-2012; 9045-9057
0006-2960
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20230
identifier_str_mv Jiang, Peng; Ventura, Alejandra; Ninfa, Alexander J.; Characterization of the Reconstituted UTase/UR-PII-NRII-NRI Bicyclic Signal Transduction System that Controls the Transcription of Nitrogen-Regulated (Ntr) Genes in Escherichia coli; American Chemical Society; Biochemistry; 51; 45; 10-2012; 9045-9057
0006-2960
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/bi300575j
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/bi300575j
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981393109352448
score 12.48226