Spore wall ultrastructure of Polypodiaceae from north-western Argentina
- Autores
- Morbelli, Marta Alicia; Giudice, Gabriela Elena
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The spore wall ultrastructure of Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.
Fil: Morbelli, Marta Alicia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Palinología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Giudice, Gabriela Elena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Morfología Vegetal; Argentina - Materia
-
Polypodiaceae
sporoderm ultrastructure
exospore
perispore
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242336
Ver los metadatos del registro completo
id |
CONICETDig_e8d2e9cad7f37254c3f8e82380dc75b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242336 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spore wall ultrastructure of Polypodiaceae from north-western ArgentinaMorbelli, Marta AliciaGiudice, Gabriela ElenaPolypodiaceaesporoderm ultrastructureexosporeperisporeArgentinahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The spore wall ultrastructure of Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.Fil: Morbelli, Marta Alicia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Palinología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Giudice, Gabriela Elena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Morfología Vegetal; ArgentinaTaylor & Francis As2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242336Morbelli, Marta Alicia; Giudice, Gabriela Elena; Spore wall ultrastructure of Polypodiaceae from north-western Argentina; Taylor & Francis As; Grana; 49; 3; 9-2010; 204-2140017-3134CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00173134.2010.513418info:eu-repo/semantics/altIdentifier/doi/10.1080/00173134.2010.513418info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:53Zoai:ri.conicet.gov.ar:11336/242336instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:53.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
title |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
spellingShingle |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina Morbelli, Marta Alicia Polypodiaceae sporoderm ultrastructure exospore perispore Argentina |
title_short |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
title_full |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
title_fullStr |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
title_full_unstemmed |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
title_sort |
Spore wall ultrastructure of Polypodiaceae from north-western Argentina |
dc.creator.none.fl_str_mv |
Morbelli, Marta Alicia Giudice, Gabriela Elena |
author |
Morbelli, Marta Alicia |
author_facet |
Morbelli, Marta Alicia Giudice, Gabriela Elena |
author_role |
author |
author2 |
Giudice, Gabriela Elena |
author2_role |
author |
dc.subject.none.fl_str_mv |
Polypodiaceae sporoderm ultrastructure exospore perispore Argentina |
topic |
Polypodiaceae sporoderm ultrastructure exospore perispore Argentina |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The spore wall ultrastructure of Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level. Fil: Morbelli, Marta Alicia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Palinología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Giudice, Gabriela Elena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Morfología Vegetal; Argentina |
description |
The spore wall ultrastructure of Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.Campyloneurum, Microgramma, Pecluma, Phlebodium, Pleopeltis and Serpocaulum (Polypodiaceae) from north-western Argentina has been studied using transmission electron microscopy (TEM). The exospore is 0.4–3 ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick, two-layered and variously ornamented in all taxa. The exospore surface is distinctive, but in general ultrastructure the exospore is similar in all species studied. The structural elements of the exospore consist of cavities in the inner part as well as channels with a radial orientation and channels at both sides of the laesura. Variation in the exospore surface was observed in spores at different stages of maturation. The perispore is darkly contrasted and 0.04–2 ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level.ìm thick. Three different structure types were recognised, including fibrillar, multilamellar and lacunose. Scattered globules and spherules were always present on the perispore surface. The structural variability of the perispore was surveyed within complete sporangia. We concluded that the observed variability may be related to the stage in spore maturation and, consequently, to the stages in perispore differentiation. As the exospore ultrastructure is similar and interpreted as related to functional activity in the studied material, it cannot be used for systematic delimitations at this generic or specific level. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242336 Morbelli, Marta Alicia; Giudice, Gabriela Elena; Spore wall ultrastructure of Polypodiaceae from north-western Argentina; Taylor & Francis As; Grana; 49; 3; 9-2010; 204-214 0017-3134 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242336 |
identifier_str_mv |
Morbelli, Marta Alicia; Giudice, Gabriela Elena; Spore wall ultrastructure of Polypodiaceae from north-western Argentina; Taylor & Francis As; Grana; 49; 3; 9-2010; 204-214 0017-3134 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00173134.2010.513418 info:eu-repo/semantics/altIdentifier/doi/10.1080/00173134.2010.513418 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis As |
publisher.none.fl_str_mv |
Taylor & Francis As |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980614523846656 |
score |
12.993085 |