Aggregating local image descriptors into compact codes
- Autores
- Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, Jorge Adrian; Perez, P.; Schmid, C.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.
Fil: Jegou, H.. National Institute for Research in Digital Science and Technology; Francia
Fil: Perronnin, F.. Xerox; Francia
Fil: Douze, M.. National Institute for Research in Digital Science and Technology; Francia
Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Perez, P.. Technicolor; Francia
Fil: Schmid, C.. National Institute for Research in Digital Science and Technology; Francia - Materia
-
IMAGE SEARCH
IMAGE RETRIEVAL
INDEXING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/198005
Ver los metadatos del registro completo
id |
CONICETDig_e8bc63ed7469d2294a03a4f7d8eecfab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/198005 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Aggregating local image descriptors into compact codesJegou, H.Perronnin, F.Douze, M.Sanchez, Jorge AdrianPerez, P.Schmid, C.IMAGE SEARCHIMAGE RETRIEVALINDEXINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.Fil: Jegou, H.. National Institute for Research in Digital Science and Technology; FranciaFil: Perronnin, F.. Xerox; FranciaFil: Douze, M.. National Institute for Research in Digital Science and Technology; FranciaFil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Perez, P.. Technicolor; FranciaFil: Schmid, C.. National Institute for Research in Digital Science and Technology; FranciaIEEE Computer Society2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198005Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, Jorge Adrian; Perez, P.; et al.; Aggregating local image descriptors into compact codes; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 34; 9; 9-2012; 1704-17160162-8828CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2011.235info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:58Zoai:ri.conicet.gov.ar:11336/198005instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:58.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Aggregating local image descriptors into compact codes |
title |
Aggregating local image descriptors into compact codes |
spellingShingle |
Aggregating local image descriptors into compact codes Jegou, H. IMAGE SEARCH IMAGE RETRIEVAL INDEXING |
title_short |
Aggregating local image descriptors into compact codes |
title_full |
Aggregating local image descriptors into compact codes |
title_fullStr |
Aggregating local image descriptors into compact codes |
title_full_unstemmed |
Aggregating local image descriptors into compact codes |
title_sort |
Aggregating local image descriptors into compact codes |
dc.creator.none.fl_str_mv |
Jegou, H. Perronnin, F. Douze, M. Sanchez, Jorge Adrian Perez, P. Schmid, C. |
author |
Jegou, H. |
author_facet |
Jegou, H. Perronnin, F. Douze, M. Sanchez, Jorge Adrian Perez, P. Schmid, C. |
author_role |
author |
author2 |
Perronnin, F. Douze, M. Sanchez, Jorge Adrian Perez, P. Schmid, C. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
IMAGE SEARCH IMAGE RETRIEVAL INDEXING |
topic |
IMAGE SEARCH IMAGE RETRIEVAL INDEXING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core. Fil: Jegou, H.. National Institute for Research in Digital Science and Technology; Francia Fil: Perronnin, F.. Xerox; Francia Fil: Douze, M.. National Institute for Research in Digital Science and Technology; Francia Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Perez, P.. Technicolor; Francia Fil: Schmid, C.. National Institute for Research in Digital Science and Technology; Francia |
description |
This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/198005 Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, Jorge Adrian; Perez, P.; et al.; Aggregating local image descriptors into compact codes; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 34; 9; 9-2012; 1704-1716 0162-8828 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/198005 |
identifier_str_mv |
Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, Jorge Adrian; Perez, P.; et al.; Aggregating local image descriptors into compact codes; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 34; 9; 9-2012; 1704-1716 0162-8828 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2011.235 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613902336262144 |
score |
13.070432 |