An analytic solution to the alibi query in the space-time prisms model for moving object data
- Autores
- Kuijpers, Bart; Grimson, Rafael; Othmans, Walied
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When speed limitations in these sample points are also known, space-time prisms (also called beads) (Pfoser and Jensen 1999, Egenhofer 2003, Miller 2005) can be used to model the uncertainty about an object's location in between sample points. In this setting, a query of particular interest that has been studied in the literature of geographic information systems (GIS) is the alibi query. This boolean query asks whether two moving objects could have physically met. This adds up to deciding whether the chains of space-time prisms (also called necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space-time prisms intersect. The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatiotemporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it. The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three existential quantifiers. Implementations of general purpose elimination algorithms, such as those provided by QEPCAD, Redlog, and Mathematica, are, for practical purposes, too slow in answering the alibi query for two specific space-time prisms. These software packages completely fail to answer the alibi query in the parametric case (i.e., when it is formulated in terms of parameters representing the sample points and speed constraints). The main contribution of this article is an analytical solution to the parametric alibi query, which can be used to answer the alibi query on two specific space-time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains of space-time prisms in time proportional to the sum of the lengths of the chains. To back this claim up, we implemented our method in Mathematica alongside the traditional quantifier elimination method. The solutions we propose are based on the geometric argumentation and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could provide a solution.
Fil: Kuijpers, Bart. Hasselt University; Bélgica
Fil: Grimson, Rafael. Hasselt University; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Othmans, Walied. Hasselt University; Bélgica - Materia
-
Alibi Query
Constraint Databases
Moving Objects
Space-Time Prism
Spatiotemporal
Uncertainty - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68097
Ver los metadatos del registro completo
id |
CONICETDig_e76bde11567cfafe56c364dd47d996c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68097 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An analytic solution to the alibi query in the space-time prisms model for moving object dataKuijpers, BartGrimson, RafaelOthmans, WaliedAlibi QueryConstraint DatabasesMoving ObjectsSpace-Time PrismSpatiotemporalUncertaintyhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When speed limitations in these sample points are also known, space-time prisms (also called beads) (Pfoser and Jensen 1999, Egenhofer 2003, Miller 2005) can be used to model the uncertainty about an object's location in between sample points. In this setting, a query of particular interest that has been studied in the literature of geographic information systems (GIS) is the alibi query. This boolean query asks whether two moving objects could have physically met. This adds up to deciding whether the chains of space-time prisms (also called necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space-time prisms intersect. The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatiotemporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it. The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three existential quantifiers. Implementations of general purpose elimination algorithms, such as those provided by QEPCAD, Redlog, and Mathematica, are, for practical purposes, too slow in answering the alibi query for two specific space-time prisms. These software packages completely fail to answer the alibi query in the parametric case (i.e., when it is formulated in terms of parameters representing the sample points and speed constraints). The main contribution of this article is an analytical solution to the parametric alibi query, which can be used to answer the alibi query on two specific space-time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains of space-time prisms in time proportional to the sum of the lengths of the chains. To back this claim up, we implemented our method in Mathematica alongside the traditional quantifier elimination method. The solutions we propose are based on the geometric argumentation and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could provide a solution.Fil: Kuijpers, Bart. Hasselt University; BélgicaFil: Grimson, Rafael. Hasselt University; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Othmans, Walied. Hasselt University; BélgicaTaylor & Francis2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/68097Kuijpers, Bart; Grimson, Rafael; Othmans, Walied; An analytic solution to the alibi query in the space-time prisms model for moving object data; Taylor & Francis; International Journal Of Geographical Information Science; 25; 2; 2-2011; 293-3221365-8816CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/13658810902967397info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/13658810902967397info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:39Zoai:ri.conicet.gov.ar:11336/68097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:39.433CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
title |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
spellingShingle |
An analytic solution to the alibi query in the space-time prisms model for moving object data Kuijpers, Bart Alibi Query Constraint Databases Moving Objects Space-Time Prism Spatiotemporal Uncertainty |
title_short |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
title_full |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
title_fullStr |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
title_full_unstemmed |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
title_sort |
An analytic solution to the alibi query in the space-time prisms model for moving object data |
dc.creator.none.fl_str_mv |
Kuijpers, Bart Grimson, Rafael Othmans, Walied |
author |
Kuijpers, Bart |
author_facet |
Kuijpers, Bart Grimson, Rafael Othmans, Walied |
author_role |
author |
author2 |
Grimson, Rafael Othmans, Walied |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Alibi Query Constraint Databases Moving Objects Space-Time Prism Spatiotemporal Uncertainty |
topic |
Alibi Query Constraint Databases Moving Objects Space-Time Prism Spatiotemporal Uncertainty |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When speed limitations in these sample points are also known, space-time prisms (also called beads) (Pfoser and Jensen 1999, Egenhofer 2003, Miller 2005) can be used to model the uncertainty about an object's location in between sample points. In this setting, a query of particular interest that has been studied in the literature of geographic information systems (GIS) is the alibi query. This boolean query asks whether two moving objects could have physically met. This adds up to deciding whether the chains of space-time prisms (also called necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space-time prisms intersect. The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatiotemporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it. The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three existential quantifiers. Implementations of general purpose elimination algorithms, such as those provided by QEPCAD, Redlog, and Mathematica, are, for practical purposes, too slow in answering the alibi query for two specific space-time prisms. These software packages completely fail to answer the alibi query in the parametric case (i.e., when it is formulated in terms of parameters representing the sample points and speed constraints). The main contribution of this article is an analytical solution to the parametric alibi query, which can be used to answer the alibi query on two specific space-time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains of space-time prisms in time proportional to the sum of the lengths of the chains. To back this claim up, we implemented our method in Mathematica alongside the traditional quantifier elimination method. The solutions we propose are based on the geometric argumentation and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could provide a solution. Fil: Kuijpers, Bart. Hasselt University; Bélgica Fil: Grimson, Rafael. Hasselt University; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Othmans, Walied. Hasselt University; Bélgica |
description |
Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When speed limitations in these sample points are also known, space-time prisms (also called beads) (Pfoser and Jensen 1999, Egenhofer 2003, Miller 2005) can be used to model the uncertainty about an object's location in between sample points. In this setting, a query of particular interest that has been studied in the literature of geographic information systems (GIS) is the alibi query. This boolean query asks whether two moving objects could have physically met. This adds up to deciding whether the chains of space-time prisms (also called necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space-time prisms intersect. The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatiotemporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it. The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three existential quantifiers. Implementations of general purpose elimination algorithms, such as those provided by QEPCAD, Redlog, and Mathematica, are, for practical purposes, too slow in answering the alibi query for two specific space-time prisms. These software packages completely fail to answer the alibi query in the parametric case (i.e., when it is formulated in terms of parameters representing the sample points and speed constraints). The main contribution of this article is an analytical solution to the parametric alibi query, which can be used to answer the alibi query on two specific space-time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains of space-time prisms in time proportional to the sum of the lengths of the chains. To back this claim up, we implemented our method in Mathematica alongside the traditional quantifier elimination method. The solutions we propose are based on the geometric argumentation and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could provide a solution. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68097 Kuijpers, Bart; Grimson, Rafael; Othmans, Walied; An analytic solution to the alibi query in the space-time prisms model for moving object data; Taylor & Francis; International Journal Of Geographical Information Science; 25; 2; 2-2011; 293-322 1365-8816 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68097 |
identifier_str_mv |
Kuijpers, Bart; Grimson, Rafael; Othmans, Walied; An analytic solution to the alibi query in the space-time prisms model for moving object data; Taylor & Francis; International Journal Of Geographical Information Science; 25; 2; 2-2011; 293-322 1365-8816 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/13658810902967397 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/13658810902967397 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613956683956224 |
score |
13.070432 |