Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution

Autores
Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; Fernández Alberti, Sebastián
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.
Fil: Bastida, Adolfo. Universidad de Murcia; España
Fil: Soler, Miguel A.. Universidad de Murcia; España
Fil: Zúñiga, José. Universidad de Murcia; España
Fil: Requena, Alberto. Universidad de Murcia; España
Fil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
vibrational relaxation
intramolecular energy redistribution
normal modes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/188902

id CONICETDig_e714d14c19313f19462966fa04b5cad7
oai_identifier_str oai:ri.conicet.gov.ar:11336/188902
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solutionBastida, AdolfoSoler, Miguel A.Zúñiga, JoséRequena, AlbertoKalstein, AdrianFernández Alberti, Sebastiánvibrational relaxationintramolecular energy redistributionnormal modeshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.Fil: Bastida, Adolfo. Universidad de Murcia; EspañaFil: Soler, Miguel A.. Universidad de Murcia; EspañaFil: Zúñiga, José. Universidad de Murcia; EspañaFil: Requena, Alberto. Universidad de Murcia; EspañaFil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Chemical Society2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188902Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-29801520-6106CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp210727uinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp210727uinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:27Zoai:ri.conicet.gov.ar:11336/188902instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:27.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
title Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
spellingShingle Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
Bastida, Adolfo
vibrational relaxation
intramolecular energy redistribution
normal modes
title_short Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
title_full Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
title_fullStr Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
title_full_unstemmed Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
title_sort Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
dc.creator.none.fl_str_mv Bastida, Adolfo
Soler, Miguel A.
Zúñiga, José
Requena, Alberto
Kalstein, Adrian
Fernández Alberti, Sebastián
author Bastida, Adolfo
author_facet Bastida, Adolfo
Soler, Miguel A.
Zúñiga, José
Requena, Alberto
Kalstein, Adrian
Fernández Alberti, Sebastián
author_role author
author2 Soler, Miguel A.
Zúñiga, José
Requena, Alberto
Kalstein, Adrian
Fernández Alberti, Sebastián
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv vibrational relaxation
intramolecular energy redistribution
normal modes
topic vibrational relaxation
intramolecular energy redistribution
normal modes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.
Fil: Bastida, Adolfo. Universidad de Murcia; España
Fil: Soler, Miguel A.. Universidad de Murcia; España
Fil: Zúñiga, José. Universidad de Murcia; España
Fil: Requena, Alberto. Universidad de Murcia; España
Fil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/188902
Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-2980
1520-6106
CONICET Digital
CONICET
url http://hdl.handle.net/11336/188902
identifier_str_mv Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-2980
1520-6106
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp210727u
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp210727u
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613179927166976
score 13.070432