Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution
- Autores
- Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; Fernández Alberti, Sebastián
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.
Fil: Bastida, Adolfo. Universidad de Murcia; España
Fil: Soler, Miguel A.. Universidad de Murcia; España
Fil: Zúñiga, José. Universidad de Murcia; España
Fil: Requena, Alberto. Universidad de Murcia; España
Fil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
vibrational relaxation
intramolecular energy redistribution
normal modes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188902
Ver los metadatos del registro completo
id |
CONICETDig_e714d14c19313f19462966fa04b5cad7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188902 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solutionBastida, AdolfoSoler, Miguel A.Zúñiga, JoséRequena, AlbertoKalstein, AdrianFernández Alberti, Sebastiánvibrational relaxationintramolecular energy redistributionnormal modeshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.Fil: Bastida, Adolfo. Universidad de Murcia; EspañaFil: Soler, Miguel A.. Universidad de Murcia; EspañaFil: Zúñiga, José. Universidad de Murcia; EspañaFil: Requena, Alberto. Universidad de Murcia; EspañaFil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Chemical Society2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188902Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-29801520-6106CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp210727uinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp210727uinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:27Zoai:ri.conicet.gov.ar:11336/188902instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:27.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
title |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
spellingShingle |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution Bastida, Adolfo vibrational relaxation intramolecular energy redistribution normal modes |
title_short |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
title_full |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
title_fullStr |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
title_full_unstemmed |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
title_sort |
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution |
dc.creator.none.fl_str_mv |
Bastida, Adolfo Soler, Miguel A. Zúñiga, José Requena, Alberto Kalstein, Adrian Fernández Alberti, Sebastián |
author |
Bastida, Adolfo |
author_facet |
Bastida, Adolfo Soler, Miguel A. Zúñiga, José Requena, Alberto Kalstein, Adrian Fernández Alberti, Sebastián |
author_role |
author |
author2 |
Soler, Miguel A. Zúñiga, José Requena, Alberto Kalstein, Adrian Fernández Alberti, Sebastián |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
vibrational relaxation intramolecular energy redistribution normal modes |
topic |
vibrational relaxation intramolecular energy redistribution normal modes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes. Fil: Bastida, Adolfo. Universidad de Murcia; España Fil: Soler, Miguel A.. Universidad de Murcia; España Fil: Zúñiga, José. Universidad de Murcia; España Fil: Requena, Alberto. Universidad de Murcia; España Fil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188902 Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-2980 1520-6106 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/188902 |
identifier_str_mv |
Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-2980 1520-6106 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp210727u info:eu-repo/semantics/altIdentifier/doi/10.1021/jp210727u |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613179927166976 |
score |
13.070432 |