Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
- Autores
- Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.
Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina - Materia
-
Molecular Dynamics
Ionic conductivity
Silicate Glasses
Transport channels - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/255694
Ver los metadatos del registro completo
id |
CONICETDig_e6f54e172f285a4ec0e4c966250c71aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/255694 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part IIBalbuena, CristianFrechero, Marisa AlejandraMontani, Ruben AlfredoMolecular DynamicsIonic conductivitySilicate GlassesTransport channelshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaElsevier Science2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/255694Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-1390167-2738CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:19Zoai:ri.conicet.gov.ar:11336/255694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:19.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
title |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
spellingShingle |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II Balbuena, Cristian Molecular Dynamics Ionic conductivity Silicate Glasses Transport channels |
title_short |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
title_full |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
title_fullStr |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
title_full_unstemmed |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
title_sort |
Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II |
dc.creator.none.fl_str_mv |
Balbuena, Cristian Frechero, Marisa Alejandra Montani, Ruben Alfredo |
author |
Balbuena, Cristian |
author_facet |
Balbuena, Cristian Frechero, Marisa Alejandra Montani, Ruben Alfredo |
author_role |
author |
author2 |
Frechero, Marisa Alejandra Montani, Ruben Alfredo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Molecular Dynamics Ionic conductivity Silicate Glasses Transport channels |
topic |
Molecular Dynamics Ionic conductivity Silicate Glasses Transport channels |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions. Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina |
description |
In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/255694 Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-139 0167-2738 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/255694 |
identifier_str_mv |
Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-139 0167-2738 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614405332926464 |
score |
13.070432 |