Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II

Autores
Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.
Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Materia
Molecular Dynamics
Ionic conductivity
Silicate Glasses
Transport channels
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/255694

id CONICETDig_e6f54e172f285a4ec0e4c966250c71aa
oai_identifier_str oai:ri.conicet.gov.ar:11336/255694
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part IIBalbuena, CristianFrechero, Marisa AlejandraMontani, Ruben AlfredoMolecular DynamicsIonic conductivitySilicate GlassesTransport channelshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaElsevier Science2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/255694Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-1390167-2738CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:19Zoai:ri.conicet.gov.ar:11336/255694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:19.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
title Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
spellingShingle Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
Balbuena, Cristian
Molecular Dynamics
Ionic conductivity
Silicate Glasses
Transport channels
title_short Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
title_full Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
title_fullStr Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
title_full_unstemmed Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
title_sort Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II
dc.creator.none.fl_str_mv Balbuena, Cristian
Frechero, Marisa Alejandra
Montani, Ruben Alfredo
author Balbuena, Cristian
author_facet Balbuena, Cristian
Frechero, Marisa Alejandra
Montani, Ruben Alfredo
author_role author
author2 Frechero, Marisa Alejandra
Montani, Ruben Alfredo
author2_role author
author
dc.subject.none.fl_str_mv Molecular Dynamics
Ionic conductivity
Silicate Glasses
Transport channels
topic Molecular Dynamics
Ionic conductivity
Silicate Glasses
Transport channels
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.
Fil: Balbuena, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Montani, Ruben Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
description In the context of the ionic transport in glasses, the concept of conduction channels (or pathways) has proved to be useful to rationalize both experimental and computational results. While the concept of a transport “channel” is well defined for crystalline solid conductors, for the case of glasses this concept mainly refers to a finite region of the sample (at least in the diffusive time scale) in which mobile ions have a convenient environment to perform the electrical transport. In the previous work, we present an alternative way to put into evidence the existence of such regions in the diffusion time scale during a molecular dynamics experiment. In fact in that work [1] we use the so-called isoconfigurational ensemble method (ICEM) and the associated concept of particle propensity, both recently introduced by Harrowell and co-workers [2]. Then the notion of particle propensity to movement—immerse in the ICEM—was employed to find the existence of regions which are dynamically more active for the moving particles: the conduction channels. In the present paper we provide more computational evidence to support our alternative way to make evident the existence of channels that we presented in [1]: we show in this paper that our procedure is exactly equivalent to the approach previously adopted by other authors in the literature. This coincidence between the two searching strategies allow us to add more information about the nature of the channels. In fact, we can state now for the first time that the existence of the channels is defined at the very beginning of the dynamics and they remain almost unchanged even in the diffusive (nanosecond) scale. Besides, it was shown that a channel is a region of a sample which is also highly correlated dynamically during the trajectory of the moving ions.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/255694
Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-139
0167-2738
CONICET Digital
CONICET
url http://hdl.handle.net/11336/255694
identifier_str_mv Balbuena, Cristian; Frechero, Marisa Alejandra; Montani, Ruben Alfredo; Evidence for ion transport channels in lithium silicate glasses using the isoconfigurational ensemble. Part II; Elsevier Science; Solid State Ionics; 255; 2-2014; 135-139
0167-2738
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614405332926464
score 13.070432