Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition

Autores
Zhang, Z.; Tariq, A.; Zeng, F.; Chai, X.; Graciano, Corina
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The planting of seedlings is the most effective measure for vegetation restoration. However, this practice is challenging in desert ecosystems where water and nutrients are scarce. Calligonum mongolicum is a sand-fixing pioneer shrub species, and its adaptive strategy for nitrogen (N) deposition and drought is poorly understood. Thus, in a pot experiment, we studied the impacts of four N levels (0, 3, 6, 9 gN·m−2·year−1) under drought or a well-watered regime on multiple eco-physiological responses of 1-year-old C. mongolicum seedlings. Compared to well-watered conditions, drought considerably influenced seedling growth by impairing photosynthesis, osmolyte accumulation and activity of superoxide dismutase and enzymes related to N metabolism. Nitrogen addition improved the productivity of drought-stressed seedlings, as revealed by increased water use efficiency, enhanced superoxide dismutase and nitrite reductase activity and elevated N and phosphorus (P) levels in seedlings. Nevertheless, the addition of moderate to high levels of N (6–9 gN·m−2·year−1) impaired net photosynthesis, osmolyte accumulation and nitrate reductase activity. N addition and water regimes did not markedly change the N:P ratios of aboveground parts; while more biomass and nutrients were allocated to fine roots to assimilate the insufficient resources. Soluble protein in assimilating shoots might play a vital role in adaptation to the desert environment. The response of C. mongolicum seedlings to N addtion and drought involved an interdependency between soluble protein and morphological, physiological and biochemical processes. These findings provide an important reference for vegetation restoration in arid lands under global change.
Fil: Zhang, Z.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Tariq, A.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Zeng, F.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Chai, X.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina
Materia
ELEMENTAL STOICHIOMETRY
GLOBAL CHANGE
N ADDITION
NETWORK ANALYSIS
RESOURCE ALLOCATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/152773

id CONICETDig_e6792599527dd44ed0bd865d10347644
oai_identifier_str oai:ri.conicet.gov.ar:11336/152773
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen additionZhang, Z.Tariq, A.Zeng, F.Chai, X.Graciano, CorinaELEMENTAL STOICHIOMETRYGLOBAL CHANGEN ADDITIONNETWORK ANALYSISRESOURCE ALLOCATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The planting of seedlings is the most effective measure for vegetation restoration. However, this practice is challenging in desert ecosystems where water and nutrients are scarce. Calligonum mongolicum is a sand-fixing pioneer shrub species, and its adaptive strategy for nitrogen (N) deposition and drought is poorly understood. Thus, in a pot experiment, we studied the impacts of four N levels (0, 3, 6, 9 gN·m−2·year−1) under drought or a well-watered regime on multiple eco-physiological responses of 1-year-old C. mongolicum seedlings. Compared to well-watered conditions, drought considerably influenced seedling growth by impairing photosynthesis, osmolyte accumulation and activity of superoxide dismutase and enzymes related to N metabolism. Nitrogen addition improved the productivity of drought-stressed seedlings, as revealed by increased water use efficiency, enhanced superoxide dismutase and nitrite reductase activity and elevated N and phosphorus (P) levels in seedlings. Nevertheless, the addition of moderate to high levels of N (6–9 gN·m−2·year−1) impaired net photosynthesis, osmolyte accumulation and nitrate reductase activity. N addition and water regimes did not markedly change the N:P ratios of aboveground parts; while more biomass and nutrients were allocated to fine roots to assimilate the insufficient resources. Soluble protein in assimilating shoots might play a vital role in adaptation to the desert environment. The response of C. mongolicum seedlings to N addtion and drought involved an interdependency between soluble protein and morphological, physiological and biochemical processes. These findings provide an important reference for vegetation restoration in arid lands under global change.Fil: Zhang, Z.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Tariq, A.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Zeng, F.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Chai, X.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaWiley Blackwell Publishing, Inc2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152773Zhang, Z.; Tariq, A.; Zeng, F.; Chai, X.; Graciano, Corina; Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition; Wiley Blackwell Publishing, Inc; Plant Biology; 23; 1; 10-2020; 32-431435-8603CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/plb.13190info:eu-repo/semantics/altIdentifier/doi/10.1111/plb.13190info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:06Zoai:ri.conicet.gov.ar:11336/152773instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:06.326CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
title Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
spellingShingle Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
Zhang, Z.
ELEMENTAL STOICHIOMETRY
GLOBAL CHANGE
N ADDITION
NETWORK ANALYSIS
RESOURCE ALLOCATION
title_short Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
title_full Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
title_fullStr Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
title_full_unstemmed Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
title_sort Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition
dc.creator.none.fl_str_mv Zhang, Z.
Tariq, A.
Zeng, F.
Chai, X.
Graciano, Corina
author Zhang, Z.
author_facet Zhang, Z.
Tariq, A.
Zeng, F.
Chai, X.
Graciano, Corina
author_role author
author2 Tariq, A.
Zeng, F.
Chai, X.
Graciano, Corina
author2_role author
author
author
author
dc.subject.none.fl_str_mv ELEMENTAL STOICHIOMETRY
GLOBAL CHANGE
N ADDITION
NETWORK ANALYSIS
RESOURCE ALLOCATION
topic ELEMENTAL STOICHIOMETRY
GLOBAL CHANGE
N ADDITION
NETWORK ANALYSIS
RESOURCE ALLOCATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The planting of seedlings is the most effective measure for vegetation restoration. However, this practice is challenging in desert ecosystems where water and nutrients are scarce. Calligonum mongolicum is a sand-fixing pioneer shrub species, and its adaptive strategy for nitrogen (N) deposition and drought is poorly understood. Thus, in a pot experiment, we studied the impacts of four N levels (0, 3, 6, 9 gN·m−2·year−1) under drought or a well-watered regime on multiple eco-physiological responses of 1-year-old C. mongolicum seedlings. Compared to well-watered conditions, drought considerably influenced seedling growth by impairing photosynthesis, osmolyte accumulation and activity of superoxide dismutase and enzymes related to N metabolism. Nitrogen addition improved the productivity of drought-stressed seedlings, as revealed by increased water use efficiency, enhanced superoxide dismutase and nitrite reductase activity and elevated N and phosphorus (P) levels in seedlings. Nevertheless, the addition of moderate to high levels of N (6–9 gN·m−2·year−1) impaired net photosynthesis, osmolyte accumulation and nitrate reductase activity. N addition and water regimes did not markedly change the N:P ratios of aboveground parts; while more biomass and nutrients were allocated to fine roots to assimilate the insufficient resources. Soluble protein in assimilating shoots might play a vital role in adaptation to the desert environment. The response of C. mongolicum seedlings to N addtion and drought involved an interdependency between soluble protein and morphological, physiological and biochemical processes. These findings provide an important reference for vegetation restoration in arid lands under global change.
Fil: Zhang, Z.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Tariq, A.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Zeng, F.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Chai, X.. Chinese Academy of Sciences; República de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; China
Fil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina
description The planting of seedlings is the most effective measure for vegetation restoration. However, this practice is challenging in desert ecosystems where water and nutrients are scarce. Calligonum mongolicum is a sand-fixing pioneer shrub species, and its adaptive strategy for nitrogen (N) deposition and drought is poorly understood. Thus, in a pot experiment, we studied the impacts of four N levels (0, 3, 6, 9 gN·m−2·year−1) under drought or a well-watered regime on multiple eco-physiological responses of 1-year-old C. mongolicum seedlings. Compared to well-watered conditions, drought considerably influenced seedling growth by impairing photosynthesis, osmolyte accumulation and activity of superoxide dismutase and enzymes related to N metabolism. Nitrogen addition improved the productivity of drought-stressed seedlings, as revealed by increased water use efficiency, enhanced superoxide dismutase and nitrite reductase activity and elevated N and phosphorus (P) levels in seedlings. Nevertheless, the addition of moderate to high levels of N (6–9 gN·m−2·year−1) impaired net photosynthesis, osmolyte accumulation and nitrate reductase activity. N addition and water regimes did not markedly change the N:P ratios of aboveground parts; while more biomass and nutrients were allocated to fine roots to assimilate the insufficient resources. Soluble protein in assimilating shoots might play a vital role in adaptation to the desert environment. The response of C. mongolicum seedlings to N addtion and drought involved an interdependency between soluble protein and morphological, physiological and biochemical processes. These findings provide an important reference for vegetation restoration in arid lands under global change.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/152773
Zhang, Z.; Tariq, A.; Zeng, F.; Chai, X.; Graciano, Corina; Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition; Wiley Blackwell Publishing, Inc; Plant Biology; 23; 1; 10-2020; 32-43
1435-8603
CONICET Digital
CONICET
url http://hdl.handle.net/11336/152773
identifier_str_mv Zhang, Z.; Tariq, A.; Zeng, F.; Chai, X.; Graciano, Corina; Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition; Wiley Blackwell Publishing, Inc; Plant Biology; 23; 1; 10-2020; 32-43
1435-8603
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/plb.13190
info:eu-repo/semantics/altIdentifier/doi/10.1111/plb.13190
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782449963499520
score 12.982451