On the construction of absolutely normal numbers

Autores
Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.
Fil: Aistleitner, Christoph. Technical University Graz; Austria
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scheerer, Adrian-Maria. Technical University Graz; Austria
Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos
Materia
DISCREPANCY
NORMAL NUMBERS
UNIFORM DISTRIBUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60326

id CONICETDig_e5457286f6903ed0a615966020da3893
oai_identifier_str oai:ri.conicet.gov.ar:11336/60326
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the construction of absolutely normal numbersAistleitner, ChristophBecher, Veronica AndreaScheerer, Adrian-MariaSlaman, Theodore A.DISCREPANCYNORMAL NUMBERSUNIFORM DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.Fil: Aistleitner, Christoph. Technical University Graz; AustriaFil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scheerer, Adrian-Maria. Technical University Graz; AustriaFil: Slaman, Theodore A.. University of California at Berkeley; Estados UnidosPolish Academy of Sciences. Institute of Mathematics2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60326Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-3460065-1036CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4064/aa170213-5-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/60326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:19.594CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the construction of absolutely normal numbers
title On the construction of absolutely normal numbers
spellingShingle On the construction of absolutely normal numbers
Aistleitner, Christoph
DISCREPANCY
NORMAL NUMBERS
UNIFORM DISTRIBUTION
title_short On the construction of absolutely normal numbers
title_full On the construction of absolutely normal numbers
title_fullStr On the construction of absolutely normal numbers
title_full_unstemmed On the construction of absolutely normal numbers
title_sort On the construction of absolutely normal numbers
dc.creator.none.fl_str_mv Aistleitner, Christoph
Becher, Veronica Andrea
Scheerer, Adrian-Maria
Slaman, Theodore A.
author Aistleitner, Christoph
author_facet Aistleitner, Christoph
Becher, Veronica Andrea
Scheerer, Adrian-Maria
Slaman, Theodore A.
author_role author
author2 Becher, Veronica Andrea
Scheerer, Adrian-Maria
Slaman, Theodore A.
author2_role author
author
author
dc.subject.none.fl_str_mv DISCREPANCY
NORMAL NUMBERS
UNIFORM DISTRIBUTION
topic DISCREPANCY
NORMAL NUMBERS
UNIFORM DISTRIBUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.
Fil: Aistleitner, Christoph. Technical University Graz; Austria
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scheerer, Adrian-Maria. Technical University Graz; Austria
Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos
description We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60326
Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-346
0065-1036
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60326
identifier_str_mv Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-346
0065-1036
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4064/aa170213-5-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269998635024384
score 13.13397