On the construction of absolutely normal numbers
- Autores
- Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.
Fil: Aistleitner, Christoph. Technical University Graz; Austria
Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Scheerer, Adrian-Maria. Technical University Graz; Austria
Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos - Materia
-
DISCREPANCY
NORMAL NUMBERS
UNIFORM DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60326
Ver los metadatos del registro completo
id |
CONICETDig_e5457286f6903ed0a615966020da3893 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60326 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the construction of absolutely normal numbersAistleitner, ChristophBecher, Veronica AndreaScheerer, Adrian-MariaSlaman, Theodore A.DISCREPANCYNORMAL NUMBERSUNIFORM DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before.Fil: Aistleitner, Christoph. Technical University Graz; AustriaFil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scheerer, Adrian-Maria. Technical University Graz; AustriaFil: Slaman, Theodore A.. University of California at Berkeley; Estados UnidosPolish Academy of Sciences. Institute of Mathematics2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60326Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-3460065-1036CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4064/aa170213-5-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/60326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:19.594CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the construction of absolutely normal numbers |
title |
On the construction of absolutely normal numbers |
spellingShingle |
On the construction of absolutely normal numbers Aistleitner, Christoph DISCREPANCY NORMAL NUMBERS UNIFORM DISTRIBUTION |
title_short |
On the construction of absolutely normal numbers |
title_full |
On the construction of absolutely normal numbers |
title_fullStr |
On the construction of absolutely normal numbers |
title_full_unstemmed |
On the construction of absolutely normal numbers |
title_sort |
On the construction of absolutely normal numbers |
dc.creator.none.fl_str_mv |
Aistleitner, Christoph Becher, Veronica Andrea Scheerer, Adrian-Maria Slaman, Theodore A. |
author |
Aistleitner, Christoph |
author_facet |
Aistleitner, Christoph Becher, Veronica Andrea Scheerer, Adrian-Maria Slaman, Theodore A. |
author_role |
author |
author2 |
Becher, Veronica Andrea Scheerer, Adrian-Maria Slaman, Theodore A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DISCREPANCY NORMAL NUMBERS UNIFORM DISTRIBUTION |
topic |
DISCREPANCY NORMAL NUMBERS UNIFORM DISTRIBUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before. Fil: Aistleitner, Christoph. Technical University Graz; Austria Fil: Becher, Veronica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Scheerer, Adrian-Maria. Technical University Graz; Austria Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos |
description |
We give a construction of an absolutely normal real number x such that for every integer b greater than or equal to 2, the discrepancy of the first N terms of the sequence (bnx mod 1)n≥0 is of asymptotic order O(N−1/2). This is below the order of discrepancy which holds for almost all real numbers. Even the existence of absolutely normal numbers having a discrepancy of such a small asymptotic order was not known before. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60326 Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-346 0065-1036 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60326 |
identifier_str_mv |
Aistleitner, Christoph; Becher, Veronica Andrea; Scheerer, Adrian-Maria; Slaman, Theodore A.; On the construction of absolutely normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 180; 4; 12-2017; 333-346 0065-1036 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4064/aa170213-5-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269998635024384 |
score |
13.13397 |