Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models
- Autores
- Olave, Melisa; Avila, Luciano Javier; Sites, Jack W.; Morando, Mariana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Explanations for gene tree discordance with respect to a species tree are commonly attributed to deep coalescence (also known as incomplete lineage sorting [ILS]), as well as different evolutionary processes such as hybridization, horizontal gene transfer and gene duplication. Among these, deep coalescence is usually quantified as the number of extra linages and has been studied as the principal source of discordance among gene trees, while the other processes that could contribute to gene tree discordance have not been fully explored. This is an important issue for hybridization because interspecific gene flow is well documented and widespread across many plant and animal groups. Here, we propose a new way to detect gene flow when ILS is present that evaluates the likelihood of different models with various levels of gene flow, by comparing the expected gene tree discordance, using the number of extra lineages. This approach consists of proposing a model, simulating a set of gene trees to infer a distribution of expected extra lineages given the model, and calculating a likelihood function by comparing the fit of the real gene trees to the simulated distribution. To count extra lineages, the gene tree is first reconciled within the species tree, and for a given species tree branch the number of gene lineages minus one is counted. We develop a set of r functions to parallelize software to allow simulations, and to compare hypotheses via a likelihood ratio test to evaluate the presence of gene flow when ILS is present, in a fast and simple way. Our results show high accuracy under very challenging scenarios of high impact of ILS and low gene flow levels, even using a modest dataset of 5–10 loci and 5–10 individuals per species. We present a powerful and fast method to detect hybridization in the presence of ILS. We discuss its advantage with large dataset (such as genomic scale), and also identifies possible issues that should be explored with more complex models in future studies.
Fil: Olave, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina. University of Konstanz; Alemania
Fil: Avila, Luciano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina
Fil: Sites, Jack W.. Brigham Young University; Estados Unidos
Fil: Morando, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina - Materia
-
Deep Coalescence
Gene Flow
Hybridization
Likelihood
Model-Based Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61977
Ver los metadatos del registro completo
| id |
CONICETDig_e4f0202c14322f6a6fe415ce4c7c28fc |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61977 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit modelsOlave, MelisaAvila, Luciano JavierSites, Jack W.Morando, MarianaDeep CoalescenceGene FlowHybridizationLikelihoodModel-Based Analysishttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Explanations for gene tree discordance with respect to a species tree are commonly attributed to deep coalescence (also known as incomplete lineage sorting [ILS]), as well as different evolutionary processes such as hybridization, horizontal gene transfer and gene duplication. Among these, deep coalescence is usually quantified as the number of extra linages and has been studied as the principal source of discordance among gene trees, while the other processes that could contribute to gene tree discordance have not been fully explored. This is an important issue for hybridization because interspecific gene flow is well documented and widespread across many plant and animal groups. Here, we propose a new way to detect gene flow when ILS is present that evaluates the likelihood of different models with various levels of gene flow, by comparing the expected gene tree discordance, using the number of extra lineages. This approach consists of proposing a model, simulating a set of gene trees to infer a distribution of expected extra lineages given the model, and calculating a likelihood function by comparing the fit of the real gene trees to the simulated distribution. To count extra lineages, the gene tree is first reconciled within the species tree, and for a given species tree branch the number of gene lineages minus one is counted. We develop a set of r functions to parallelize software to allow simulations, and to compare hypotheses via a likelihood ratio test to evaluate the presence of gene flow when ILS is present, in a fast and simple way. Our results show high accuracy under very challenging scenarios of high impact of ILS and low gene flow levels, even using a modest dataset of 5–10 loci and 5–10 individuals per species. We present a powerful and fast method to detect hybridization in the presence of ILS. We discuss its advantage with large dataset (such as genomic scale), and also identifies possible issues that should be explored with more complex models in future studies.Fil: Olave, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina. University of Konstanz; AlemaniaFil: Avila, Luciano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Sites, Jack W.. Brigham Young University; Estados UnidosFil: Morando, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaBritish Ecological Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61977Olave, Melisa; Avila, Luciano Javier; Sites, Jack W.; Morando, Mariana; Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models; British Ecological Society; Methods in Ecology and Evolution; 9; 1; 1-2018; 121-1332041-210XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.12846info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12846info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:42:14Zoai:ri.conicet.gov.ar:11336/61977instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:42:14.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| title |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| spellingShingle |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models Olave, Melisa Deep Coalescence Gene Flow Hybridization Likelihood Model-Based Analysis |
| title_short |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| title_full |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| title_fullStr |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| title_full_unstemmed |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| title_sort |
Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models |
| dc.creator.none.fl_str_mv |
Olave, Melisa Avila, Luciano Javier Sites, Jack W. Morando, Mariana |
| author |
Olave, Melisa |
| author_facet |
Olave, Melisa Avila, Luciano Javier Sites, Jack W. Morando, Mariana |
| author_role |
author |
| author2 |
Avila, Luciano Javier Sites, Jack W. Morando, Mariana |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Deep Coalescence Gene Flow Hybridization Likelihood Model-Based Analysis |
| topic |
Deep Coalescence Gene Flow Hybridization Likelihood Model-Based Analysis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Explanations for gene tree discordance with respect to a species tree are commonly attributed to deep coalescence (also known as incomplete lineage sorting [ILS]), as well as different evolutionary processes such as hybridization, horizontal gene transfer and gene duplication. Among these, deep coalescence is usually quantified as the number of extra linages and has been studied as the principal source of discordance among gene trees, while the other processes that could contribute to gene tree discordance have not been fully explored. This is an important issue for hybridization because interspecific gene flow is well documented and widespread across many plant and animal groups. Here, we propose a new way to detect gene flow when ILS is present that evaluates the likelihood of different models with various levels of gene flow, by comparing the expected gene tree discordance, using the number of extra lineages. This approach consists of proposing a model, simulating a set of gene trees to infer a distribution of expected extra lineages given the model, and calculating a likelihood function by comparing the fit of the real gene trees to the simulated distribution. To count extra lineages, the gene tree is first reconciled within the species tree, and for a given species tree branch the number of gene lineages minus one is counted. We develop a set of r functions to parallelize software to allow simulations, and to compare hypotheses via a likelihood ratio test to evaluate the presence of gene flow when ILS is present, in a fast and simple way. Our results show high accuracy under very challenging scenarios of high impact of ILS and low gene flow levels, even using a modest dataset of 5–10 loci and 5–10 individuals per species. We present a powerful and fast method to detect hybridization in the presence of ILS. We discuss its advantage with large dataset (such as genomic scale), and also identifies possible issues that should be explored with more complex models in future studies. Fil: Olave, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina. University of Konstanz; Alemania Fil: Avila, Luciano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina Fil: Sites, Jack W.. Brigham Young University; Estados Unidos Fil: Morando, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina |
| description |
Explanations for gene tree discordance with respect to a species tree are commonly attributed to deep coalescence (also known as incomplete lineage sorting [ILS]), as well as different evolutionary processes such as hybridization, horizontal gene transfer and gene duplication. Among these, deep coalescence is usually quantified as the number of extra linages and has been studied as the principal source of discordance among gene trees, while the other processes that could contribute to gene tree discordance have not been fully explored. This is an important issue for hybridization because interspecific gene flow is well documented and widespread across many plant and animal groups. Here, we propose a new way to detect gene flow when ILS is present that evaluates the likelihood of different models with various levels of gene flow, by comparing the expected gene tree discordance, using the number of extra lineages. This approach consists of proposing a model, simulating a set of gene trees to infer a distribution of expected extra lineages given the model, and calculating a likelihood function by comparing the fit of the real gene trees to the simulated distribution. To count extra lineages, the gene tree is first reconciled within the species tree, and for a given species tree branch the number of gene lineages minus one is counted. We develop a set of r functions to parallelize software to allow simulations, and to compare hypotheses via a likelihood ratio test to evaluate the presence of gene flow when ILS is present, in a fast and simple way. Our results show high accuracy under very challenging scenarios of high impact of ILS and low gene flow levels, even using a modest dataset of 5–10 loci and 5–10 individuals per species. We present a powerful and fast method to detect hybridization in the presence of ILS. We discuss its advantage with large dataset (such as genomic scale), and also identifies possible issues that should be explored with more complex models in future studies. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61977 Olave, Melisa; Avila, Luciano Javier; Sites, Jack W.; Morando, Mariana; Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models; British Ecological Society; Methods in Ecology and Evolution; 9; 1; 1-2018; 121-133 2041-210X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/61977 |
| identifier_str_mv |
Olave, Melisa; Avila, Luciano Javier; Sites, Jack W.; Morando, Mariana; Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models; British Ecological Society; Methods in Ecology and Evolution; 9; 1; 1-2018; 121-133 2041-210X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.12846 info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12846 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
British Ecological Society |
| publisher.none.fl_str_mv |
British Ecological Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597629738418176 |
| score |
12.976206 |