Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage

Autores
Molina, Marcelo Gustavo; Mercado, Pedro Enrique
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
High penetration of renewable energy sources such as wind generation in microgrids (MGs) causes fluctuations of power flow and significantly affects the power system (PS) operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With the proper control, superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the PS. In an SMES system, the power conditioning system (PCS) is the crucial component that directly influences the validity of the SMES in the dynamic control of the PS. This paper proposes the use of an improved SMES controller for the stabilization and control of the power flow of wind-hybrid MGs. In this sense, the design and implementation of a novel high-performance PCS scheme of the SMES is described. Moreover, a detailed model of the SMES unit is derived and a novel three-level control scheme is designed, comprising a full decoupled current control strategy in the d-q reference frame and an enhanced PS frequency controller. The dynamic performance of the proposed systems is fully validated by computer simulation.
Fil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
DISTRIBUTED ENERGY STORAGE
MICROGRIDS (MGS)
POWER CONDITIONING SYSTEM (PCS)
SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/189795

id CONICETDig_e405ad2fe260f5f5b297f2b96da20f98
oai_identifier_str oai:ri.conicet.gov.ar:11336/189795
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storageMolina, Marcelo GustavoMercado, Pedro EnriqueDISTRIBUTED ENERGY STORAGEMICROGRIDS (MGS)POWER CONDITIONING SYSTEM (PCS)SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2High penetration of renewable energy sources such as wind generation in microgrids (MGs) causes fluctuations of power flow and significantly affects the power system (PS) operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With the proper control, superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the PS. In an SMES system, the power conditioning system (PCS) is the crucial component that directly influences the validity of the SMES in the dynamic control of the PS. This paper proposes the use of an improved SMES controller for the stabilization and control of the power flow of wind-hybrid MGs. In this sense, the design and implementation of a novel high-performance PCS scheme of the SMES is described. Moreover, a detailed model of the SMES unit is derived and a novel three-level control scheme is designed, comprising a full decoupled current control strategy in the d-q reference frame and an enhanced PS frequency controller. The dynamic performance of the proposed systems is fully validated by computer simulation.Fil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitute of Electrical and Electronics Engineers2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189795Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage; Institute of Electrical and Electronics Engineers; IEEE Transactions on Power Electronics; 26; 3; 3-2011; 910-9220885-8993CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5659488info:eu-repo/semantics/altIdentifier/doi/10.1109/TPEL.2010.2097609info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:59Zoai:ri.conicet.gov.ar:11336/189795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:59.333CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
title Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
spellingShingle Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
Molina, Marcelo Gustavo
DISTRIBUTED ENERGY STORAGE
MICROGRIDS (MGS)
POWER CONDITIONING SYSTEM (PCS)
SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)
title_short Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
title_full Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
title_fullStr Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
title_full_unstemmed Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
title_sort Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage
dc.creator.none.fl_str_mv Molina, Marcelo Gustavo
Mercado, Pedro Enrique
author Molina, Marcelo Gustavo
author_facet Molina, Marcelo Gustavo
Mercado, Pedro Enrique
author_role author
author2 Mercado, Pedro Enrique
author2_role author
dc.subject.none.fl_str_mv DISTRIBUTED ENERGY STORAGE
MICROGRIDS (MGS)
POWER CONDITIONING SYSTEM (PCS)
SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)
topic DISTRIBUTED ENERGY STORAGE
MICROGRIDS (MGS)
POWER CONDITIONING SYSTEM (PCS)
SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv High penetration of renewable energy sources such as wind generation in microgrids (MGs) causes fluctuations of power flow and significantly affects the power system (PS) operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With the proper control, superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the PS. In an SMES system, the power conditioning system (PCS) is the crucial component that directly influences the validity of the SMES in the dynamic control of the PS. This paper proposes the use of an improved SMES controller for the stabilization and control of the power flow of wind-hybrid MGs. In this sense, the design and implementation of a novel high-performance PCS scheme of the SMES is described. Moreover, a detailed model of the SMES unit is derived and a novel three-level control scheme is designed, comprising a full decoupled current control strategy in the d-q reference frame and an enhanced PS frequency controller. The dynamic performance of the proposed systems is fully validated by computer simulation.
Fil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description High penetration of renewable energy sources such as wind generation in microgrids (MGs) causes fluctuations of power flow and significantly affects the power system (PS) operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With the proper control, superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the PS. In an SMES system, the power conditioning system (PCS) is the crucial component that directly influences the validity of the SMES in the dynamic control of the PS. This paper proposes the use of an improved SMES controller for the stabilization and control of the power flow of wind-hybrid MGs. In this sense, the design and implementation of a novel high-performance PCS scheme of the SMES is described. Moreover, a detailed model of the SMES unit is derived and a novel three-level control scheme is designed, comprising a full decoupled current control strategy in the d-q reference frame and an enhanced PS frequency controller. The dynamic performance of the proposed systems is fully validated by computer simulation.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/189795
Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage; Institute of Electrical and Electronics Engineers; IEEE Transactions on Power Electronics; 26; 3; 3-2011; 910-922
0885-8993
CONICET Digital
CONICET
url http://hdl.handle.net/11336/189795
identifier_str_mv Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage; Institute of Electrical and Electronics Engineers; IEEE Transactions on Power Electronics; 26; 3; 3-2011; 910-922
0885-8993
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5659488
info:eu-repo/semantics/altIdentifier/doi/10.1109/TPEL.2010.2097609
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613415133249536
score 13.070432