The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects

Autores
Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.
Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México
Materia
Semiconductors
Electronic Structure
Non-Substitutional Defects
Optoelectronics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76013

id CONICETDig_e3a775ee4dec94e4c812d0ab258dd06a
oai_identifier_str oai:ri.conicet.gov.ar:11336/76013
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defectsQuerales Flores, Jose DanielVentura, Cecilia IleanaFuhr, Javier DanielBarrio, Rafael ÁngelSemiconductorsElectronic StructureNon-Substitutional DefectsOptoelectronicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; MéxicoAmerican Institute of Physics2016-09-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76013Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-100021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4962381info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4962381info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:56Zoai:ri.conicet.gov.ar:11336/76013instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:56.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
title The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
spellingShingle The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
Querales Flores, Jose Daniel
Semiconductors
Electronic Structure
Non-Substitutional Defects
Optoelectronics
title_short The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
title_full The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
title_fullStr The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
title_full_unstemmed The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
title_sort The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
dc.creator.none.fl_str_mv Querales Flores, Jose Daniel
Ventura, Cecilia Ileana
Fuhr, Javier Daniel
Barrio, Rafael Ángel
author Querales Flores, Jose Daniel
author_facet Querales Flores, Jose Daniel
Ventura, Cecilia Ileana
Fuhr, Javier Daniel
Barrio, Rafael Ángel
author_role author
author2 Ventura, Cecilia Ileana
Fuhr, Javier Daniel
Barrio, Rafael Ángel
author2_role author
author
author
dc.subject.none.fl_str_mv Semiconductors
Electronic Structure
Non-Substitutional Defects
Optoelectronics
topic Semiconductors
Electronic Structure
Non-Substitutional Defects
Optoelectronics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.
Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México
description The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76013
Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-10
0021-8979
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76013
identifier_str_mv Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-10
0021-8979
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4962381
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4962381
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782498088943616
score 12.982451