The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects
- Autores
- Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.
Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México - Materia
-
Semiconductors
Electronic Structure
Non-Substitutional Defects
Optoelectronics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76013
Ver los metadatos del registro completo
id |
CONICETDig_e3a775ee4dec94e4c812d0ab258dd06a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76013 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defectsQuerales Flores, Jose DanielVentura, Cecilia IleanaFuhr, Javier DanielBarrio, Rafael ÁngelSemiconductorsElectronic StructureNon-Substitutional DefectsOptoelectronicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; MéxicoAmerican Institute of Physics2016-09-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76013Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-100021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4962381info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4962381info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:56Zoai:ri.conicet.gov.ar:11336/76013instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:56.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
title |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
spellingShingle |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects Querales Flores, Jose Daniel Semiconductors Electronic Structure Non-Substitutional Defects Optoelectronics |
title_short |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
title_full |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
title_fullStr |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
title_full_unstemmed |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
title_sort |
The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects |
dc.creator.none.fl_str_mv |
Querales Flores, Jose Daniel Ventura, Cecilia Ileana Fuhr, Javier Daniel Barrio, Rafael Ángel |
author |
Querales Flores, Jose Daniel |
author_facet |
Querales Flores, Jose Daniel Ventura, Cecilia Ileana Fuhr, Javier Daniel Barrio, Rafael Ángel |
author_role |
author |
author2 |
Ventura, Cecilia Ileana Fuhr, Javier Daniel Barrio, Rafael Ángel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Semiconductors Electronic Structure Non-Substitutional Defects Optoelectronics |
topic |
Semiconductors Electronic Structure Non-Substitutional Defects Optoelectronics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications. Fil: Querales Flores, Jose Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Ventura, Cecilia Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México |
description |
The existence of non-substitutional β-Sn defects in Ge1-xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1-xSnx, including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1-xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76013 Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-10 0021-8979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76013 |
identifier_str_mv |
Querales Flores, Jose Daniel; Ventura, Cecilia Ileana; Fuhr, Javier Daniel; Barrio, Rafael Ángel; The two gap transitions in Ge1–xSnx: Effect of non-substitutional complex defects; American Institute of Physics; Journal of Applied Physics; 120; 10; 13-9-2016; 1-10 0021-8979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4962381 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4962381 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782498088943616 |
score |
12.982451 |