Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass

Autores
De Vito, María Alejandra; Benvenuto, Omar Gustavo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 3.50 M⊙, whereas for the accreting neutron star we consider initial mass values of 0.8, 1.0, 1.2 and 1.4 M⊙. Because the minimum mass for a proto-neutron star is approximately 0.9 M⊙, the value of 0.8 M⊙ was selected in order to cover the whole range of possible initial neutron star masses. The considered initial orbital period interval ranges from 0.5 to 12 d. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period–white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period–mass relation based on our own calculations is proposed, which is in good agreement with period–mass relations available in the literature. As a consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437−4715, showing that there is more than one possible set of initial parameters (masses, period and the fraction β of matter accreted by the neutron star) for this particular system.
Fil: De Vito, María Alejandra. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina
Fil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
Evolution of Stars
Close Binariesbinaries: Close
White Dwarfs
Stars
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9393

id CONICETDig_e378d98c8ea3960ac1b4d2e75ccb20f0
oai_identifier_str oai:ri.conicet.gov.ar:11336/9393
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star massDe Vito, María AlejandraBenvenuto, Omar GustavoEvolution of StarsClose Binariesbinaries: CloseWhite DwarfsStarshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 3.50 M⊙, whereas for the accreting neutron star we consider initial mass values of 0.8, 1.0, 1.2 and 1.4 M⊙. Because the minimum mass for a proto-neutron star is approximately 0.9 M⊙, the value of 0.8 M⊙ was selected in order to cover the whole range of possible initial neutron star masses. The considered initial orbital period interval ranges from 0.5 to 12 d. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period–white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period–mass relation based on our own calculations is proposed, which is in good agreement with period–mass relations available in the literature. As a consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437−4715, showing that there is more than one possible set of initial parameters (masses, period and the fraction β of matter accreted by the neutron star) for this particular system.Fil: De Vito, María Alejandra. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; ArgentinaFil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaWiley Blackwell Publishing, Inc2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9393De Vito, María Alejandra; Benvenuto, Omar Gustavo; Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass; Wiley Blackwell Publishing, Inc; Monthly Notices Of The Royal Astronomical Society; 401; 4; 2-2010; 2552-25600035-8711enginfo:eu-repo/semantics/altIdentifier/url/http://mnras.oxfordjournals.org/content/401/4/2552info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2009.15830.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:00Zoai:ri.conicet.gov.ar:11336/9393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:00.306CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
title Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
spellingShingle Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
De Vito, María Alejandra
Evolution of Stars
Close Binariesbinaries: Close
White Dwarfs
Stars
title_short Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
title_full Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
title_fullStr Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
title_full_unstemmed Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
title_sort Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass
dc.creator.none.fl_str_mv De Vito, María Alejandra
Benvenuto, Omar Gustavo
author De Vito, María Alejandra
author_facet De Vito, María Alejandra
Benvenuto, Omar Gustavo
author_role author
author2 Benvenuto, Omar Gustavo
author2_role author
dc.subject.none.fl_str_mv Evolution of Stars
Close Binariesbinaries: Close
White Dwarfs
Stars
topic Evolution of Stars
Close Binariesbinaries: Close
White Dwarfs
Stars
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 3.50 M⊙, whereas for the accreting neutron star we consider initial mass values of 0.8, 1.0, 1.2 and 1.4 M⊙. Because the minimum mass for a proto-neutron star is approximately 0.9 M⊙, the value of 0.8 M⊙ was selected in order to cover the whole range of possible initial neutron star masses. The considered initial orbital period interval ranges from 0.5 to 12 d. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period–white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period–mass relation based on our own calculations is proposed, which is in good agreement with period–mass relations available in the literature. As a consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437−4715, showing that there is more than one possible set of initial parameters (masses, period and the fraction β of matter accreted by the neutron star) for this particular system.
Fil: De Vito, María Alejandra. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina
Fil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 3.50 M⊙, whereas for the accreting neutron star we consider initial mass values of 0.8, 1.0, 1.2 and 1.4 M⊙. Because the minimum mass for a proto-neutron star is approximately 0.9 M⊙, the value of 0.8 M⊙ was selected in order to cover the whole range of possible initial neutron star masses. The considered initial orbital period interval ranges from 0.5 to 12 d. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the dependence of the final orbital period with the mass of the white dwarf. In agreement with previous expectations, our calculations show that the final orbital period–white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new period–mass relation based on our own calculations is proposed, which is in good agreement with period–mass relations available in the literature. As a consequence of considering a set of values for the initial neutron star mass, these models allow finding different plausible initial configurations (donor and neutron star masses and orbital period interval) for some of the best observed binary systems of the kind we are interested in here. We apply our calculations to analyse the case of PSR J0437−4715, showing that there is more than one possible set of initial parameters (masses, period and the fraction β of matter accreted by the neutron star) for this particular system.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9393
De Vito, María Alejandra; Benvenuto, Omar Gustavo; Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass; Wiley Blackwell Publishing, Inc; Monthly Notices Of The Royal Astronomical Society; 401; 4; 2-2010; 2552-2560
0035-8711
url http://hdl.handle.net/11336/9393
identifier_str_mv De Vito, María Alejandra; Benvenuto, Omar Gustavo; Evolution of low mass close binary systems with a neutron star: Its dependence with the initial neutron star mass; Wiley Blackwell Publishing, Inc; Monthly Notices Of The Royal Astronomical Society; 401; 4; 2-2010; 2552-2560
0035-8711
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://mnras.oxfordjournals.org/content/401/4/2552
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2009.15830.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614223443787776
score 13.070432