Centaur and giant planet crossing populations: origin and distribution

Autores
Di Sisto, Romina Paula; Rossignoli, Natalia Lorena
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets. Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by the encounters with the giant planets. We address the Giant Planet Crossing (GPC) population (those objects with 5.2 au 100km and ∼ 10 8 with D>1km in the current population. The contribution from other sources is considered negligible. The mean lifetime in the Centaur zone is 7.2 Myr, while the mean lifetime of SDOs in the GPC zone is of 68 Myr. The latter is dependent on the initial inclination, being the ones with high inclinations the ones that survive the longest in the GPC zone. There is also a correlation of lifetime with perihelion distance, where greater perihelion leads to longer lifetime. The dynamical evolution of observed GPCs is different for prograde and retrograde objects. Retrograde GPCs have lower median lifetime than prograde ones, thus experiencing a comparatively faster evolution. However, it is probable that this faster evolution is due to the fact that the majority of retrograde GPCs have low perihelion values and then, lower lifetimes.
Fil: Di Sisto, Romina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Rossignoli, Natalia Lorena. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
CENTAURS
NUMERICAL METHODS
TRANSNEPTUNIAN OBJECTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144066

id CONICETDig_e31a60cdc221a7e9919516984aef8195
oai_identifier_str oai:ri.conicet.gov.ar:11336/144066
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Centaur and giant planet crossing populations: origin and distributionDi Sisto, Romina PaulaRossignoli, Natalia LorenaCENTAURSNUMERICAL METHODSTRANSNEPTUNIAN OBJECTShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets. Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by the encounters with the giant planets. We address the Giant Planet Crossing (GPC) population (those objects with 5.2 au 100km and ∼ 10 8 with D>1km in the current population. The contribution from other sources is considered negligible. The mean lifetime in the Centaur zone is 7.2 Myr, while the mean lifetime of SDOs in the GPC zone is of 68 Myr. The latter is dependent on the initial inclination, being the ones with high inclinations the ones that survive the longest in the GPC zone. There is also a correlation of lifetime with perihelion distance, where greater perihelion leads to longer lifetime. The dynamical evolution of observed GPCs is different for prograde and retrograde objects. Retrograde GPCs have lower median lifetime than prograde ones, thus experiencing a comparatively faster evolution. However, it is probable that this faster evolution is due to the fact that the majority of retrograde GPCs have low perihelion values and then, lower lifetimes.Fil: Di Sisto, Romina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Rossignoli, Natalia Lorena. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaSpringer2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144066Di Sisto, Romina Paula; Rossignoli, Natalia Lorena; Centaur and giant planet crossing populations: origin and distribution; Springer; Celestial Mechanics & Dynamical Astronomy; 132; 6-7; 7-2020; 1-390923-2958CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2006.09657v1info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-020-09971-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:31:22Zoai:ri.conicet.gov.ar:11336/144066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:31:22.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Centaur and giant planet crossing populations: origin and distribution
title Centaur and giant planet crossing populations: origin and distribution
spellingShingle Centaur and giant planet crossing populations: origin and distribution
Di Sisto, Romina Paula
CENTAURS
NUMERICAL METHODS
TRANSNEPTUNIAN OBJECTS
title_short Centaur and giant planet crossing populations: origin and distribution
title_full Centaur and giant planet crossing populations: origin and distribution
title_fullStr Centaur and giant planet crossing populations: origin and distribution
title_full_unstemmed Centaur and giant planet crossing populations: origin and distribution
title_sort Centaur and giant planet crossing populations: origin and distribution
dc.creator.none.fl_str_mv Di Sisto, Romina Paula
Rossignoli, Natalia Lorena
author Di Sisto, Romina Paula
author_facet Di Sisto, Romina Paula
Rossignoli, Natalia Lorena
author_role author
author2 Rossignoli, Natalia Lorena
author2_role author
dc.subject.none.fl_str_mv CENTAURS
NUMERICAL METHODS
TRANSNEPTUNIAN OBJECTS
topic CENTAURS
NUMERICAL METHODS
TRANSNEPTUNIAN OBJECTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets. Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by the encounters with the giant planets. We address the Giant Planet Crossing (GPC) population (those objects with 5.2 au 100km and ∼ 10 8 with D>1km in the current population. The contribution from other sources is considered negligible. The mean lifetime in the Centaur zone is 7.2 Myr, while the mean lifetime of SDOs in the GPC zone is of 68 Myr. The latter is dependent on the initial inclination, being the ones with high inclinations the ones that survive the longest in the GPC zone. There is also a correlation of lifetime with perihelion distance, where greater perihelion leads to longer lifetime. The dynamical evolution of observed GPCs is different for prograde and retrograde objects. Retrograde GPCs have lower median lifetime than prograde ones, thus experiencing a comparatively faster evolution. However, it is probable that this faster evolution is due to the fact that the majority of retrograde GPCs have low perihelion values and then, lower lifetimes.
Fil: Di Sisto, Romina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Rossignoli, Natalia Lorena. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets. Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by the encounters with the giant planets. We address the Giant Planet Crossing (GPC) population (those objects with 5.2 au 100km and ∼ 10 8 with D>1km in the current population. The contribution from other sources is considered negligible. The mean lifetime in the Centaur zone is 7.2 Myr, while the mean lifetime of SDOs in the GPC zone is of 68 Myr. The latter is dependent on the initial inclination, being the ones with high inclinations the ones that survive the longest in the GPC zone. There is also a correlation of lifetime with perihelion distance, where greater perihelion leads to longer lifetime. The dynamical evolution of observed GPCs is different for prograde and retrograde objects. Retrograde GPCs have lower median lifetime than prograde ones, thus experiencing a comparatively faster evolution. However, it is probable that this faster evolution is due to the fact that the majority of retrograde GPCs have low perihelion values and then, lower lifetimes.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144066
Di Sisto, Romina Paula; Rossignoli, Natalia Lorena; Centaur and giant planet crossing populations: origin and distribution; Springer; Celestial Mechanics & Dynamical Astronomy; 132; 6-7; 7-2020; 1-39
0923-2958
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144066
identifier_str_mv Di Sisto, Romina Paula; Rossignoli, Natalia Lorena; Centaur and giant planet crossing populations: origin and distribution; Springer; Celestial Mechanics & Dynamical Astronomy; 132; 6-7; 7-2020; 1-39
0923-2958
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2006.09657v1
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-020-09971-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781916664037376
score 12.982451