Bayesian validation of grammar productions for the language of thought

Autores
Romano, Sergio Gaston; Salles, Alejo; Amalric, Marie; Dehaene, Stanislas; Sigman, Mariano; Figueira, Santiago
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different domains as statistical inference over a compositionally structured hypothesis space. While frameworks may differ on how a LoT may be implemented computationally, they all share the property that they are built from a set of atomic symbols and rules by which these symbols can be combined. In this work we propose an extra validation step for the set of atomic productions defined by the experimenter. It starts by expanding the defined LoT grammar for the cognitive domain with a broader set of arbitrary productions and then uses Bayesian inference to prune the productions from the experimental data. The result allows the researcher to validate that the resulting grammar still matches the intuitive grammar chosen for the domain. We then test this method in the language of geometry, a specific LoT model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not being a universal (i.e. Turing-complete) language, we show an empirical relation between a sequence’s probability and its complexity consistent with the theoretical relationship for universal languages described by Levin’s Coding Theorem.
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Salles, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Amalric, Marie. Université Paris Sud; Francia. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; Francia
Fil: Dehaene, Stanislas. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Université Paris Sud; Francia
Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
Bayesian
Cognition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97546

id CONICETDig_e21b48ca4901a5c41fa56ab28bd3a0b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/97546
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bayesian validation of grammar productions for the language of thoughtRomano, Sergio GastonSalles, AlejoAmalric, MarieDehaene, StanislasSigman, MarianoFigueira, SantiagoBayesianCognitionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different domains as statistical inference over a compositionally structured hypothesis space. While frameworks may differ on how a LoT may be implemented computationally, they all share the property that they are built from a set of atomic symbols and rules by which these symbols can be combined. In this work we propose an extra validation step for the set of atomic productions defined by the experimenter. It starts by expanding the defined LoT grammar for the cognitive domain with a broader set of arbitrary productions and then uses Bayesian inference to prune the productions from the experimental data. The result allows the researcher to validate that the resulting grammar still matches the intuitive grammar chosen for the domain. We then test this method in the language of geometry, a specific LoT model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not being a universal (i.e. Turing-complete) language, we show an empirical relation between a sequence’s probability and its complexity consistent with the theoretical relationship for universal languages described by Levin’s Coding Theorem.Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Salles, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Amalric, Marie. Université Paris Sud; Francia. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; FranciaFil: Dehaene, Stanislas. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Université Paris Sud; FranciaFil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaPublic Library of Science2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97546Romano, Sergio Gaston; Salles, Alejo; Amalric, Marie; Dehaene, Stanislas; Sigman, Mariano; et al.; Bayesian validation of grammar productions for the language of thought; Public Library of Science; Plos One; 13; 7; 7-20181932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200420info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0200420info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:43Zoai:ri.conicet.gov.ar:11336/97546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:43.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bayesian validation of grammar productions for the language of thought
title Bayesian validation of grammar productions for the language of thought
spellingShingle Bayesian validation of grammar productions for the language of thought
Romano, Sergio Gaston
Bayesian
Cognition
title_short Bayesian validation of grammar productions for the language of thought
title_full Bayesian validation of grammar productions for the language of thought
title_fullStr Bayesian validation of grammar productions for the language of thought
title_full_unstemmed Bayesian validation of grammar productions for the language of thought
title_sort Bayesian validation of grammar productions for the language of thought
dc.creator.none.fl_str_mv Romano, Sergio Gaston
Salles, Alejo
Amalric, Marie
Dehaene, Stanislas
Sigman, Mariano
Figueira, Santiago
author Romano, Sergio Gaston
author_facet Romano, Sergio Gaston
Salles, Alejo
Amalric, Marie
Dehaene, Stanislas
Sigman, Mariano
Figueira, Santiago
author_role author
author2 Salles, Alejo
Amalric, Marie
Dehaene, Stanislas
Sigman, Mariano
Figueira, Santiago
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Bayesian
Cognition
topic Bayesian
Cognition
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different domains as statistical inference over a compositionally structured hypothesis space. While frameworks may differ on how a LoT may be implemented computationally, they all share the property that they are built from a set of atomic symbols and rules by which these symbols can be combined. In this work we propose an extra validation step for the set of atomic productions defined by the experimenter. It starts by expanding the defined LoT grammar for the cognitive domain with a broader set of arbitrary productions and then uses Bayesian inference to prune the productions from the experimental data. The result allows the researcher to validate that the resulting grammar still matches the intuitive grammar chosen for the domain. We then test this method in the language of geometry, a specific LoT model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not being a universal (i.e. Turing-complete) language, we show an empirical relation between a sequence’s probability and its complexity consistent with the theoretical relationship for universal languages described by Levin’s Coding Theorem.
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Salles, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Amalric, Marie. Université Paris Sud; Francia. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; Francia
Fil: Dehaene, Stanislas. Université Paris-Saclay; Francia. Institut National de la Santé et de la Recherche Médicale; Francia. Université Paris Sud; Francia
Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different domains as statistical inference over a compositionally structured hypothesis space. While frameworks may differ on how a LoT may be implemented computationally, they all share the property that they are built from a set of atomic symbols and rules by which these symbols can be combined. In this work we propose an extra validation step for the set of atomic productions defined by the experimenter. It starts by expanding the defined LoT grammar for the cognitive domain with a broader set of arbitrary productions and then uses Bayesian inference to prune the productions from the experimental data. The result allows the researcher to validate that the resulting grammar still matches the intuitive grammar chosen for the domain. We then test this method in the language of geometry, a specific LoT model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not being a universal (i.e. Turing-complete) language, we show an empirical relation between a sequence’s probability and its complexity consistent with the theoretical relationship for universal languages described by Levin’s Coding Theorem.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97546
Romano, Sergio Gaston; Salles, Alejo; Amalric, Marie; Dehaene, Stanislas; Sigman, Mariano; et al.; Bayesian validation of grammar productions for the language of thought; Public Library of Science; Plos One; 13; 7; 7-2018
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97546
identifier_str_mv Romano, Sergio Gaston; Salles, Alejo; Amalric, Marie; Dehaene, Stanislas; Sigman, Mariano; et al.; Bayesian validation of grammar productions for the language of thought; Public Library of Science; Plos One; 13; 7; 7-2018
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200420
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0200420
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613000176074752
score 13.070432