Coupling between conformation and proton binding in proteins
- Autores
- Vila, Jorge Alberto; Ripoll, Daniel R.; Arnautova, Yelena A.; Vorobjev, Yury N.; Scheraga, Harold A.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2ζ possible ionization states of the whole molecule, with ζ being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.
Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Cornell University; Estados Unidos
Fil: Ripoll, Daniel R.. Cornell University; Estados Unidos
Fil: Arnautova, Yelena A.. Cornell University; Estados Unidos
Fil: Vorobjev, Yury N.. Institute of Chemical Biology and Fundamental Medicine of Siberian Brunch of Russian Academy of Science; Rusia
Fil: Scheraga, Harold A.. Cornell University; Estados Unidos - Materia
-
CHARGE DISTRIBUTION
ELECTROSTATICS
SOLVATION
PROTEIN CONFORMATION
PROTON BINDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/237648
Ver los metadatos del registro completo
id |
CONICETDig_e2076b75b3bd2108bc2a10321cf06cfd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/237648 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Coupling between conformation and proton binding in proteinsVila, Jorge AlbertoRipoll, Daniel R.Arnautova, Yelena A.Vorobjev, Yury N.Scheraga, Harold A.CHARGE DISTRIBUTIONELECTROSTATICSSOLVATIONPROTEIN CONFORMATIONPROTON BINDINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2ζ possible ionization states of the whole molecule, with ζ being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Cornell University; Estados UnidosFil: Ripoll, Daniel R.. Cornell University; Estados UnidosFil: Arnautova, Yelena A.. Cornell University; Estados UnidosFil: Vorobjev, Yury N.. Institute of Chemical Biology and Fundamental Medicine of Siberian Brunch of Russian Academy of Science; RusiaFil: Scheraga, Harold A.. Cornell University; Estados UnidosWiley-liss, div John Wiley & Sons Inc.2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/237648Vila, Jorge Alberto; Ripoll, Daniel R.; Arnautova, Yelena A.; Vorobjev, Yury N.; Scheraga, Harold A.; Coupling between conformation and proton binding in proteins; Wiley-liss, div John Wiley & Sons Inc.; Proteins: Structure, Function And Genetics; 61; 1; 12-2005; 56-680887-3585CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/prot.20531info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/prot.20531info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:49Zoai:ri.conicet.gov.ar:11336/237648instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:49.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Coupling between conformation and proton binding in proteins |
title |
Coupling between conformation and proton binding in proteins |
spellingShingle |
Coupling between conformation and proton binding in proteins Vila, Jorge Alberto CHARGE DISTRIBUTION ELECTROSTATICS SOLVATION PROTEIN CONFORMATION PROTON BINDING |
title_short |
Coupling between conformation and proton binding in proteins |
title_full |
Coupling between conformation and proton binding in proteins |
title_fullStr |
Coupling between conformation and proton binding in proteins |
title_full_unstemmed |
Coupling between conformation and proton binding in proteins |
title_sort |
Coupling between conformation and proton binding in proteins |
dc.creator.none.fl_str_mv |
Vila, Jorge Alberto Ripoll, Daniel R. Arnautova, Yelena A. Vorobjev, Yury N. Scheraga, Harold A. |
author |
Vila, Jorge Alberto |
author_facet |
Vila, Jorge Alberto Ripoll, Daniel R. Arnautova, Yelena A. Vorobjev, Yury N. Scheraga, Harold A. |
author_role |
author |
author2 |
Ripoll, Daniel R. Arnautova, Yelena A. Vorobjev, Yury N. Scheraga, Harold A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CHARGE DISTRIBUTION ELECTROSTATICS SOLVATION PROTEIN CONFORMATION PROTON BINDING |
topic |
CHARGE DISTRIBUTION ELECTROSTATICS SOLVATION PROTEIN CONFORMATION PROTON BINDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2ζ possible ionization states of the whole molecule, with ζ being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction. Fil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Cornell University; Estados Unidos Fil: Ripoll, Daniel R.. Cornell University; Estados Unidos Fil: Arnautova, Yelena A.. Cornell University; Estados Unidos Fil: Vorobjev, Yury N.. Institute of Chemical Biology and Fundamental Medicine of Siberian Brunch of Russian Academy of Science; Rusia Fil: Scheraga, Harold A.. Cornell University; Estados Unidos |
description |
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2ζ possible ionization states of the whole molecule, with ζ being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/237648 Vila, Jorge Alberto; Ripoll, Daniel R.; Arnautova, Yelena A.; Vorobjev, Yury N.; Scheraga, Harold A.; Coupling between conformation and proton binding in proteins; Wiley-liss, div John Wiley & Sons Inc.; Proteins: Structure, Function And Genetics; 61; 1; 12-2005; 56-68 0887-3585 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/237648 |
identifier_str_mv |
Vila, Jorge Alberto; Ripoll, Daniel R.; Arnautova, Yelena A.; Vorobjev, Yury N.; Scheraga, Harold A.; Coupling between conformation and proton binding in proteins; Wiley-liss, div John Wiley & Sons Inc.; Proteins: Structure, Function And Genetics; 61; 1; 12-2005; 56-68 0887-3585 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/prot.20531 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/prot.20531 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614365245865984 |
score |
13.070432 |