Delayed coupling theory of vertebrate segmentation

Autores
Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; Oates, Andrew C.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.
Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Materia
Vertebrate Segmentation
Coupled Oscillators
Coupling Delays
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60461

id CONICETDig_e1aced8b506821cdc865ca9bd91ae064
oai_identifier_str oai:ri.conicet.gov.ar:11336/60461
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Delayed coupling theory of vertebrate segmentationMorelli, Luis GuillermoAres, SaúlHerrgen, LeahSchröter, ChristianJülicher, FrankOates, Andrew C.Vertebrate SegmentationCoupled OscillatorsCoupling Delayshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; AlemaniaFil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaFil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaFil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; AlemaniaFil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaHfsp Publishing2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60461Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-661955-2068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2976/1.3027088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:26Zoai:ri.conicet.gov.ar:11336/60461instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:27.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Delayed coupling theory of vertebrate segmentation
title Delayed coupling theory of vertebrate segmentation
spellingShingle Delayed coupling theory of vertebrate segmentation
Morelli, Luis Guillermo
Vertebrate Segmentation
Coupled Oscillators
Coupling Delays
title_short Delayed coupling theory of vertebrate segmentation
title_full Delayed coupling theory of vertebrate segmentation
title_fullStr Delayed coupling theory of vertebrate segmentation
title_full_unstemmed Delayed coupling theory of vertebrate segmentation
title_sort Delayed coupling theory of vertebrate segmentation
dc.creator.none.fl_str_mv Morelli, Luis Guillermo
Ares, Saúl
Herrgen, Leah
Schröter, Christian
Jülicher, Frank
Oates, Andrew C.
author Morelli, Luis Guillermo
author_facet Morelli, Luis Guillermo
Ares, Saúl
Herrgen, Leah
Schröter, Christian
Jülicher, Frank
Oates, Andrew C.
author_role author
author2 Ares, Saúl
Herrgen, Leah
Schröter, Christian
Jülicher, Frank
Oates, Andrew C.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Vertebrate Segmentation
Coupled Oscillators
Coupling Delays
topic Vertebrate Segmentation
Coupled Oscillators
Coupling Delays
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.
Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
description Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60461
Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-66
1955-2068
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60461
identifier_str_mv Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-66
1955-2068
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2976/1.3027088
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hfsp Publishing
publisher.none.fl_str_mv Hfsp Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613934482456576
score 13.070432