Delayed coupling theory of vertebrate segmentation
- Autores
- Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; Oates, Andrew C.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.
Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania
Fil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; Alemania
Fil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania - Materia
-
Vertebrate Segmentation
Coupled Oscillators
Coupling Delays - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60461
Ver los metadatos del registro completo
id |
CONICETDig_e1aced8b506821cdc865ca9bd91ae064 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60461 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Delayed coupling theory of vertebrate segmentationMorelli, Luis GuillermoAres, SaúlHerrgen, LeahSchröter, ChristianJülicher, FrankOates, Andrew C.Vertebrate SegmentationCoupled OscillatorsCoupling Delayshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; AlemaniaFil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaFil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaFil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; AlemaniaFil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; AlemaniaHfsp Publishing2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60461Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-661955-2068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2976/1.3027088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:26Zoai:ri.conicet.gov.ar:11336/60461instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:27.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Delayed coupling theory of vertebrate segmentation |
title |
Delayed coupling theory of vertebrate segmentation |
spellingShingle |
Delayed coupling theory of vertebrate segmentation Morelli, Luis Guillermo Vertebrate Segmentation Coupled Oscillators Coupling Delays |
title_short |
Delayed coupling theory of vertebrate segmentation |
title_full |
Delayed coupling theory of vertebrate segmentation |
title_fullStr |
Delayed coupling theory of vertebrate segmentation |
title_full_unstemmed |
Delayed coupling theory of vertebrate segmentation |
title_sort |
Delayed coupling theory of vertebrate segmentation |
dc.creator.none.fl_str_mv |
Morelli, Luis Guillermo Ares, Saúl Herrgen, Leah Schröter, Christian Jülicher, Frank Oates, Andrew C. |
author |
Morelli, Luis Guillermo |
author_facet |
Morelli, Luis Guillermo Ares, Saúl Herrgen, Leah Schröter, Christian Jülicher, Frank Oates, Andrew C. |
author_role |
author |
author2 |
Ares, Saúl Herrgen, Leah Schröter, Christian Jülicher, Frank Oates, Andrew C. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Vertebrate Segmentation Coupled Oscillators Coupling Delays |
topic |
Vertebrate Segmentation Coupled Oscillators Coupling Delays |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing. Fil: Morelli, Luis Guillermo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Ares, Saúl. Max Planck Institute For The Physics Of Complex Systems; Alemania Fil: Herrgen, Leah. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania Fil: Schröter, Christian. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania Fil: Jülicher, Frank. Max Planck Institute For The Physics Of Complex Systems; Alemania Fil: Oates, Andrew C.. Max Planck Institute Of Molecular Cell Biology And Genetics; Alemania |
description |
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60461 Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-66 1955-2068 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60461 |
identifier_str_mv |
Morelli, Luis Guillermo; Ares, Saúl; Herrgen, Leah; Schröter, Christian; Jülicher, Frank; et al.; Delayed coupling theory of vertebrate segmentation; Hfsp Publishing; Hfsp Journal; 3; 1; 12-2009; 55-66 1955-2068 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2976/1.3027088 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hfsp Publishing |
publisher.none.fl_str_mv |
Hfsp Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613934482456576 |
score |
13.070432 |